Loading...

Follow Spaceflight History on Feedspot

Continue with Google
Continue with Facebook
or

Valid
That's no Moonbase. . .that's a Space Station. Image credit: NASA
After nearly two decades, I am no longer a resident of Flagstaff, Arizona. The movers loaded up a truck and transplanted us in the Phoenix, Arizona, area on 6 July, where the temperature topped out at 114° Fahrenheit. In the intervening days, we've had dust storms mixed with rain, as might occur, I suppose, on a Mars where terraforming at last is showing obvious results. Neither the high temperature nor the dust storms are typical of Flagstaff (nor, indeed, of any other place I have lived).

That being said, this is familiar territory. My grandparents were snowbirds here, and my late wife's parents retired to nearby Tucson. That was the first place I met them. Also, Flagstaff and Phoenix are only about 100 miles apart, so I have visited many times.

Flagstaff is at 7000 feet, while Phoenix is closer to 2000 feet. So, while Phoenix is desert and saguaro, Flagstaff is snowy mountains and ponderosa pine. I've always enjoyed that startling difference. High altitude meant noticeably lower air pressure in Flagstaff. One had to take it into account when opening food packages sealed closer to sea level. Failure to do so could result in food jetting out of its container.

None of this is especially relevant to the purpose of this blog. It is, however, illustrative of how my world is changing. I think it makes a pretty decent excuse for why this blog has been neglected this past month or so. We had to find lodgings, I continued working remotely for the Lunar Reconnaissance Orbiter Camera (LROC) team, I continued physical therapy, and then there was the seemingly endless packing of books and files. I have a lot of books and files. In fact, by weight, books and files probably accounted for 90% of our move.

Monday was my first day at work. Right now I am working on five Featured Image posts for the LROC website. One is about peculiar "cold spots" that appear around young, smallish craters in Diviner thermal data. Diviner is another instrument on the Lunar Reconnaissance Orbiter (LRO) spacecraft. The other four focus on anaglyph images of Tycho, the peculiar Mare Marginis "swirls," and two lesser-known geologic features. (Anaglyph images appear three-dimensional when viewed through red-blue or red-green glasses.)

As for this blog, I am eager to complete an all-new post. Though back in January I declared that I would focus on lunar bases in 2018, the post I am working on is about a space station. I'm not breaking my promise, however; the components designed for this station were re-applied to both a lunar-orbital station concept and an important lunar base study. I am not sure when this post will be complete, though unless I become lost in a dust storm, it will certainly be finished by the end of this month.
Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
NASA's lunar soft-landers: in the background, the Apollo 12 Lunar Module Intrepid; in the foreground with Apollo 12 Commander Charles Conrad, Surveyor 3. Image credit: NASA
In the 1960s, U.S. space assets included two spacecraft designed to soft-land on the Moon. These were automated three-legged Surveyor, of which seven were launched on Atlas-Centaur rockets between June 1966 and January 1968 (five Surveyors landed successfully), and the piloted, four-legged Apollo Lunar Module (LM), which landed at six sites between July 1969 and December 1972.

Even as Surveyor 7 successfully soft-landed near the great ray crater Tycho, NASA, science advisory groups, Congress, and President Lyndon Johnson considered plans for a project to soft-land spacecraft on Mars. Originally conceived in late 1967/early 1968 as "Titan Mars 1973," Project Viking, as it became known, received new-start funding in the Fiscal Year (FY) 1969 budget.

NASA's Langley Research Center (LaRC) managed Viking. LaRC, located in Hampton, Virginia, contracted with Martin Marietta in Denver, Colorado, to build two new-design Viking Landers. Meanwhile, the Jet Propulsion Laboratory (JPL) in Pasadena, California, began work on two Viking Orbiters based on its Mariner flyby spacecraft design first flown in 1962. The twin Viking spacecraft would each comprise a Lander and an Orbiter, and each Lander-Orbiter combination would leave Earth atop a Titan rocket with a Centaur upper stage.

NASA at first planned to launch the Vikings in July 1973, when an opportunity for a minimum-energy Earth-Mars transfer would occur. In January 1970, however, tight funding planned for FY 1971 forced a slip to the August-September 1975 minimum-energy Earth-Mars transfer opportunity.

For NASA's piloted space program, 1970 was eventful even though only a single mission took place. The mission, Apollo 13 (11-17 April 1970), was intended to build on the experience gained through the Apollo 11 (16-24 July 1969) and Apollo 12 (14-24 November 1969) landings. The Apollo 11 LM Eagle landed long, but the Apollo 12 LM Intrepid set down close by derelict Surveyor 3 on the Ocean of Storms, demonstrating that the LM could successfully reach a predetermined target.

Landing accuracy was important for planning geologic traverses, the first of which was to have taken place at Fra Mauro during Apollo 13. An explosion in the Service Module of the Apollo 13 Command and Service Module (CSM) Odyssey scrubbed the landing and put off the first lunar geologic traverse to Apollo 14 (31 January-9 February 1971), which also was directed to Fra Mauro.

The Apollo 13 accident and postponement of subsequent missions meant that much of the activity in NASA's piloted program in 1970 concerned planning and budgets. President Richard Nixon saw no cause for a large-scale Apollo-type goal in the 1970s; NASA Administrator Thomas Paine begged to differ. Nixon appointed the Space Task Group (STG) in February 1969 - less than a month after his inauguration - and made his Vice President, Spiro Agnew, its chair. Paine, a Washington neophyte, misjudged Agnew's importance in the Nixon White House, so believed that he had scored big when Agnew declared at the Apollo 11 launch that he believed NASA should put a man on Mars before the end of the 20th century.

Paine took Agnew's statement as an endorsement of the Integrated Program Plan (IPP), NASA's proposal for its future after Apollo. The IPP included a large Earth-orbital "Space Base," nuclear rockets, lunar orbital and surface bases, a piloted Mars landing mission, and Mars orbital and surface bases. At Paine's insistence, the STG's September 1969 report The Post-Apollo Space Program: Directions for the Future offered the White House only the IPP with three different timetables for carrying it out. Nixon's aides, more cognizant of their boss's thoughts on spaceflight, added an introduction outlining a future with no major goals and no target dates.

This NASA Marshall Space Flight Center illustration from 1970 displays Integrated Program Plan hardware elements planned to be operational in the 1990s. 
Paine largely ignored this clear message, instead focusing his efforts on making a permanent Earth-orbiting Space Station NASA's 1970s goal. In addition to a host of Earth-focused uses, the Station would permit astronauts to live and work in space for long periods. This would enable aerospace physicians to certify that humans could remain in space long enough to reach and return from Mars, a voyage that might last three years. A reusable piloted logistics resupply & crew rotation spacecraft - a Space Shuttle - would economically service the Station.

Paine expected that NASA would use a two-stage version of the Saturn V rocket to launch the core Station and other large IPP hardware elements. In January 1970, however, he found himself obliged to announce that Saturn V production would end with the fifteenth rocket in the series. Apollo missions through Apollo 19 would occur at six-month intervals, ending in 1974, and Apollo 20 would be canceled so that its Saturn V, the last of the original Apollo buy, could launch the Skylab Orbital Workshop.

NASA advance planning developed a split personality in 1970. Some planners assumed that Saturn V rockets would be available indefinitely; others, that the Space Shuttle would launch all IPP hardware.

For example, even as Paine announced the end of Saturn V production, NASA piloted spaceflight planners studied a versatile reusable chemical-propellant Space Tug which could double as a Saturn V fourth stage. As early as 1980, a four-stage Saturn V would launch a Lunar Orbit Space Station (LOSS). The Saturn V S-IVB third stage would boost the LOSS/Space Tug toward the Moon and detach; the Space Tug would then correct the LOSS's course en route to the Moon and slow it so that the Moon's gravity could capture it into lunar orbit.

Subsequent Saturn V missions would build up a propellant farm and fleet of Space Tugs in lunar orbit. Astronauts in Space Tugs with crew cabins and landing legs would then descend from the LOSS to resume piloted lunar surface exploration and build a Lunar Surface Base (LSB).

Space Tug outfitted for piloted lunar landings. Image credit: NASA
In June 1970, five planners with Bellcomm, the NASA Headquarters planning contractor, completed a multi-part memorandum in which they bemoaned the "prolonged gap in the lunar program. . .of at least six years" that NASA's Space Tug/LOSS/LSB plans would create. They argued that the gap would threaten the multidisciplinary community of lunar scientists Apollo and its robotic precursors had created. The gap also meant that Apollo exploration would make discoveries that could not be followed up until at least 1980. Construction of the LSB could not proceed immediately after the LOSS was established; piloted Space Tug missions to check out prospective LSB sites would need to take place first.

The Bellcomm team proposed a novel method of filling the gap after Apollo 19 and hastening construction of the LSB. They sought to repurpose spacecraft designs expected to become available in 1975: namely, the robotic Orbiter and Lander of the Viking Mars exploration program.

At the time they wrote, neither the Viking Orbiter nor Viking Lander designs were final. The Lander, for example, would eventually carry three biology experiments and two scanning cameras, but the Bellcomm team assumed only two biology experiments and one camera. They saw this as an advantage, for it meant that the Mars Viking design was not so far along that it could not to some degree take into account anticipated Lunar Viking needs.

Lunar Viking Lander. Image credit: NASA/Russell Arasmith
The most obvious modification to the Mars Viking design for lunar missions would be replacement of the Lander aeroshell, heat shield, and parachutes with a solid-propellant landing rocket. The Lunar Viking Orbiter would expend liquid propellants to slow itself and the Lunar Viking Lander so that the Moon's gravity could capture the combination into lunar orbit, then would perform maneuvers to adjust its orbit ahead of Lander release. The Lander would then detach and, at the proper time for a landing at its target site, ignite the solid-propellant rocket. After its propellant was expended, the motor casing would fall away. The Lunar Viking Lander would then complete descent and soft-landing using liquid-propellant vernier rockets.

The Bellcomm team outlined six basic Lunar Viking missions; some included several variants. For example, the first Lunar Viking mission, the Orbital Survey Mission, would have three variants. None would include a Lander and all would use only instruments planned for the Mars Viking Orbiter. All three would complete their main objectives a month after capture into lunar orbit.

The Orbital Survey Mission variant #1 would see a Viking Lunar Orbiter map the entire Moon in visual wavelengths at eight-meter resolution from 460-kilometer-high lunar polar orbit. Variant #2 would map the entire lunar surface in stereo at 12-meter resolution. For variant #3, a Lunar Viking Orbiter would operate in 100-kilometer orbit. This, the Bellcomm planners explained, would enable it to image potential Lunar Viking Lander and Space Tug landing sites at two-meter resolution.

The Mars Viking Orbiter was meant to transmit data at a rate of just 1000 bits per second over a distance ranging from tens of millions to hundreds of millions of kilometers (that is, from Mars to Earth). The Lunar Viking Orbiter, on the other hand, would transmit from only about 380,000 kilometers (that is, from the Moon), so in theory could transmit about 75,000 bits per second. The Viking Orbiter data recorder could, Bellcomm estimated, store up to 100 images. The Lunar Viking Orbiter would use these capabilities to image the Moon while it was out of radio contact over the Farside hemisphere and transmit the Farside images to Earth while it passed over the Nearside hemisphere.

A Titan III-C rocket would be sufficient to place the Lunar Viking Orbiter into a 100-kilometer circular lunar polar orbit with plenty of propellant remaining on board for additional maneuvers. An Atlas-Centaur SLV-3C rocket would suffice if after lunar-orbit capture no other maneuvers were planned.

The second type of Orbiter-only Lunar Viking mission would use a Titan III-C-launched Orbiter outfitted with a scientific instrument suite tailored specifically for lunar investigations. The Bellcomm team modeled their specialized Lunar Viking Orbiter science payload on instruments expected to be mounted in the Service Module of the advanced Apollo 16, Apollo 17, Apollo 18, and Apollo 19 CSMs.

The Bellcomm team's third Lunar Viking mission would establish twin Farside Geophysical Observatories. A Titan III-D/Centaur rocket - the rocket intended in 1970 to launch the 1975 Mars Vikings - could, they calculated, place a stripped-down Lunar Viking Orbiter with two Lunar Viking Landers attached into a 600-kilometer circular equatorial orbit. The twin Landers would then detach and land at two different Farside sites, out of direct radio contact with Earth. The Orbiter would serve as a communications satellite for retransmitting radio signals from the twin Landers. Landing site selection would be based on Orbital Survey Mission images.

The Farside Geophysical Observatory payload on the twin Landers would comprise instruments similar to those in the Apollo Lunar Scientific Experiment Package (ALSEP) the Apollo astronauts first deployed during Apollo 12. This would extend the exclusively Nearside Apollo seismic monitoring network to the Farside hemisphere.

Unfortunately, a Lunar Viking Orbiter in 600-kilometer equatorial orbit could receive signals from each Lunar Viking Lander only about 10% of the time. They noted that an Orbiter in a 5000-kilometer circular equatorial orbit could communicate with a Lander at Tsiolkovskii crater (23° south latitude) 26% of the time. Launching on the Titan III-D/Centaur would, they explained, enable the stripped-down Lunar Viking Orbiter to carry enough propellants to capture into 600-kilometer orbit and, after it released the Landers, maneuver to a 5000-kilometer communications orbit for the remainder of the mission.

Bellcomm's fourth Lunar Viking mission, the Farside Geochemical Mission, would see a Lunar Viking Orbiter/augmented Lunar Viking Lander combination leave Earth atop a Titan III-D/Centaur and capture into a 2000-kilometer circular equatorial orbit. The augmented Lunar Viking Lander would detach and ignite its chemical-propellant motors to place itself into a 2000-kilometer-by-100-kilometer elliptical orbit, then would ignite them again to reach a 100-kilometer circular equatorial orbit.

Finally, it would use its solid-propellant motor to deorbit and chemical-propellant verniers to soft-land at a geologically interesting Farside site. The Bellcomm team proposed that it transport to the surface a rover weighing up to 2000 pounds. Neither the augmented Lunar Viking Lander nor the rover was described. The Orbiter, again stripped down to serve mainly as a communications satellite, would remain in its initial 2000-kilometer orbit throughout the mission.

The Polar Mission, fifth on Bellcomm's list, would see the Lunar Viking Orbiter and Lander perform science together much as the Mars Viking Orbiter and Lander were meant to do. The Orbiter would again serve as a relay, but would also carry a suite of scientific instruments. The Lunar Viking Orbiter would capture into a 100-kilometer lunar polar orbit. As it passed over the Moon's poles, it would search permanently shadowed polar craters for ice deposits.

If ice were found, the Orbiter would release the Lander and maneuver to a higher orbit to improve communications. The Lander, meanwhile, would touch down in cold darkness and use an arm-mounted scoop or perhaps a drill to collect surface material for analysis in an on-board automated lab.

The sixth and most complex Lunar Viking mission, the Transient Event Mission, would aim to find and study Transient Lunar Phenomena (TLP). The Bellcomm team, which devoted an entire appendix of their report to TLP studies, noted that TLP had been recorded for decades at many sites on the Moon by telescopic observers. Appearing as bright spots, color changes, and hazes, TLP were generally interpreted as volcanic gas releases tied, perhaps, to the tides Earth raises in the solid crust of the Moon.

According to the Bellcomm planners, about half of all TLP recorded by 1970 had occurred in and around 40-kilometer-wide Aristarchus crater, located just west of Mare Imbrium in one of the most geologically diverse areas of the Moon. The Lunar Viking Orbiter would thus spend as much time as possible within sight of Aristarchus. This requirement would, along with the need for good image resolution, dictate Lunar Viking Orbiter altitude and maneuvers.

Aristarchus is the largest and brightest crater in this Apollo 15 image. Image credit: NASA
In June 1970, the Mars Viking Orbiter was expected to operate during a six-month Earth-Mars cruise and then for at least three months in Mars orbit. This meant that - in theory - the Lunar Viking Orbiter could be expected to seek TLP for nine months in lunar orbit. In practice, the spacecraft would pass in and out of night several times each day as it orbited the Moon from very near the beginning of its mission, placing added stress on its solar arrays, batteries, and temperature-sensitive systems.

The Bellcomm team expected that the Lunar Viking Orbiter might not last for nine months, but that it would last long enough to detect a pattern in the occurrence of TLP events. Based on this pattern, the Lunar Viking Lander would be directed to a site where it would be likely to witness a TLP event up close.

If the Lunar Viking Orbiter could not spot enough TLP events to enable scientists to detect a pattern, the Lander would be dispatched to Aristarchus. There it would seek evidence of past TLP and stand by in the hope that it might witness a TLP event.

The Bellcomm planners lamented an expected six-year gap in U.S. lunar landings. One wonders how they would have greeted the news that NASA would soft-land no spacecraft on the Moon after Apollo 17 in December 1972 - that after almost 60 years, Apollo 17 remains the last U.S. lunar soft-lander. Three automated soft-landers followed Apollo 17: the Soviet Union's Luna 21, which delivered the eight-wheeled Lunokhod 2 rover (1973); Luna 24, which collected and launched to Earth a small sample of lunar surface material (1976); and China's Chang'e 3 lander (2015), which delivered the small Yutu rover.

20 August 1975: Viking 1 launch atop a Titan III-E/Centaur rocket. Image credit: NASA
The Viking 1 and Viking 2 spacecraft exceeded all expectations. Viking 1 reached Mars orbit on 19 June 1976. The Viking 1 Lander separated from its Orbiter and soft-landed on 20 July 1976. The Viking 1 Orbiter depleted its attitude-control gas supply and was turned off on 17 August 1980. Though designed to operate on Mars for 90 martian days (Sols), the Viking 1 Lander transmitted from Mars until 13 November 1982 - a total of 2245 Sols. It might have lasted longer, but a faulty command caused it to break contact with Earth.

Viking 2 reached Mars on 7 August 1976, and its Lander touched down on 3 September 1976. The Viking 2 Orbiter suffered a propulsion system leak and was turned off on 25 July 1978; the Viking 2 Lander suffered battery failure and was switched off on 11 April 1980.

The Viking landers perform multiple life-detection experiments (with equivocal results). Together, the four spacecraft of Viking 1 and Viking 2 transmitted to Earth more than 100,000 images.

NASA and its contractors proposed Viking-derived missions in the late 1970s and early 1980s. These included rover and dual-rover missions, sample-returners, and landers and rovers for the martian moons Phobos and Deimos. Their planning efforts in some ways resembled those of Apollo planners in the Apollo Applications Program, which led ultimately to the Skylab Orbital Workshop. Earth-orbiting Skylab was staffed three times in 1973-1974. There was, however, no Viking Applications Program: despite Viking's success, its spacecraft saw no further application.

Mariner-based Viking Orbiter with attached Viking Lander capsule. Image credit: NASA
Schematic of Viking Lander as it would appear on Mars with all appendages deployed. Image credit: NASA
Sources

The Post-Apollo Space Program: Directions for the Future, Space Task Group Report to the President, September 1969

America's Next Decades in Space: A Report for the Space Task Group, NASA, September 1969

Internal Note: Integrated Space Program - 1970-1990, IN-PD-SA-69-4, T. Sharpe & G. von Tiesenhausen, Advanced Systems Analysis Office, Program Development, NASA Marshall Space Flight Center, 10 December 1969

"U. S. Space Pace Slowed Severely," W. Normyle, Aviation Week & Space Technology, 19 January 1970, p. 16

"Presentation Outline [Space Tug]," NASA Manned Spacecraft Center, 20 January 1970

"NASA Budget Hits 7-Year Low," W. Normyle, Aviation Week & Space Technology, 2 February 1970, pp. 16-18

"Viking Spacecraft for Lunar Exploration - Case 340," R. Kostoff, M. Liwshitz, S. Shapiro, W. Sill, and A. Sinclair, Bellcomm, Inc., 30 June 1970

On Mars: Exploration of the Red Planet, 1958-1978, NASA SP-4212, E. Ezell and L. Ezell, NASA, 1984, pp. 128-153, pp. 185-201, pp. 245-284

More Information

"Assuming That Everything Goes Perfectly Well In The Apollo Program. . ." (1967)

The Russians are Roving! The Russians are Roving! A 1970 JPL Plan for a 1979 Mars Rover

Think Big: A 1970 Flight Schedule for NASA's 1969 Integrated Program Plan

A Bridge from Skylab to Station/Shuttle: Interim Space Station Program (1971)

Prelude to Mars Sample Return: the Mars 1984 Mission (1977)

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
This cutaway illustration of the Saturn V rocket configured for Apollo lunar missions needs some explanation. "Apollo Capsule" is a label almost never applied to the Apollo Command and Service Module (CSM) spacecraft. "LOX" is liquid oxygen. In the top two stages of the three-stage rocket, fuel tanks hold liquid hydrogen; the first stage fuel tank contains RP-1 aviation fuel similar to kerosene. Image credit: NASA
Long before NASA reached the Moon, the U.S. civilian space agency's managers and engineers began to look at ways of using Apollo lunar hardware in non-lunar and advanced lunar missions. In April 1963, for example, the Manned Spacecraft Center (MSC) in Houston awarded North American Aviation (NAA), prime contractor for the three-man Apollo Command and Service Module (CSM) spacecraft, a contract to study modifying the CSM to serve as a six-man crew transport and logistics resupply vehicle for a 24-man Earth-orbiting space station.

In early 1964, President Lyndon Baines Johnson asked NASA Administrator James Webb to plan a future space program based on Apollo hardware. The primary goal was to squeeze the Apollo investment for all it was worth. NASA began to study options for using Apollo hardware for new missions. Progress in 1964 was minimal in part because the space agency was oversubscribed. In addition to creating Apollo spacecraft, launchers, and infrastructure, NASA was preparing Project Gemini, a series of 10 piloted missions meant to teach American astronauts rendezvous and docking and spacewalk techniques required for Apollo Moon flights and to confirm that astronauts could live in space long enough (up to two weeks) to accomplish a lunar mission.

On 18 February 1965, George Mueller, NASA Associate Administrator for Manned Space Flight, told the U.S. House of Representatives Committee on Science and Astronautics that repurposing Apollo hardware would enable NASA "to perform a number of useful missions. . .in an earlier time-frame than might otherwise be expected" and at a fraction of the cost of developing wholly new spacecraft. He explained that NASA's program for applying Apollo hardware to new missions "would follow the basic Apollo manned lunar landing program and would represent an intermediate step between this important national goal and future manned space flight programs." At the time he testified, the first manned lunar landing attempt was slated for late 1967 or early 1968.

Six months later, in August 1965, Mueller established the Saturn-Apollo Applications (SAA) Office at NASA Headquarters. The new organization quickly began efforts to define the SAA Program's hardware requirements and mission manifest. At about the same time, SAA began to be referred to as the Apollo Applications Program (AAP), the name by which it is best known today.

In late January 1966, Mueller wrote to the directors of the three main NASA facilities dedicated to piloted spaceflight - MSC, the Marshall Space Flight Center (MSFC), and Kennedy Space Center - to sum up SAA's evolving objectives. He told them that, in addition to readying NASA for its next Apollo-scale space goal - no one knew what that would be in early 1966, but a large space station in Earth orbit was high on the list - SAA should provide immediate returns in areas as diverse as air pollution control, Earth-resources remote sensing, improved weather forecasting, materials science, and communications satellite repair.

Apollo spacecraft and rockets in 1966. The "Uprated Saturn I" rocket at lower right, used for Earth-orbital missions, would soon be renamed the Saturn IB. Image credit: NASA
By March 1966, the SAA Program Office had compiled a list of potential new missions for Apollo hardware. From MSC and NAA came proposals for CSM missions in low-Earth orbit (LEO), geosynchronous orbit, and lunar orbit. MSFC proposed that spent S-IVB second stages of Saturn IB rockets be outfitted in LEO to serve double-duty as pressurized "workshops."

Apollo Lunar Module (LM) prime contractor Grumman suggested that LMs without legs or ascent engines might serve as Earth-orbital and lunar-orbital scientific instrument carriers and mini-laboratories. The company also proposed manned and unmanned LM variants - respectively the LM Taxi and the LM Shelter - for 14-day lunar surface stays. The LM Shelter design took several forms; most carried surface transportation systems (rovers or flyers).

All of these spacecraft would reach space atop Apollo Saturn IB and Saturn V rockets, some of which might be uprated for increased payload capacity. In its early SAA planning, NASA referred to missions by their launch vehicle designations. The second, third, and fourth Saturn V-launched SAA missions were thus called AS-511, AS-512, and AS-513 because they would use the 11th, 12th, and 13th of 15 Saturn V rockets purchased for Apollo. SAA planners assumed that, the moment Apollo achieved its goal of a man on the Moon, all remaining Apollo hardware would be released to the SAA Program.

The image above shows an Apollo Command and Service Module (CSM) spacecraft docked with a proposed Lunar Module (LM) variant meant to serve as a telescope mount for an SAA Workshop in Earth orbit. The AS-511 LM Lab would have shared many features with this design. Image credit: Grumman/NASA
The SAA Program Office envisioned AS-511 as a CSM-LM Lab mission that would map the Moon from lunar polar orbit. Its three-man crew would operate mapping cameras and sensors mounted on the LM Lab as the Moon revolved beneath their spacecraft, then would cast off the LM Lab and ignite their CSM's single Service Propulsion System (SPS) main engine to leave lunar orbit and return to Earth.

AS-512 would see a three-man CSM deliver an uncrewed LM Shelter to near-equatorial lunar orbit. The LM Shelter would undock and descend automatically to a preselected landing site. The three astronauts would then return to Earth.

AS-513, the first SAA piloted lunar landing mission, would launch less than three months after AS-512. Two astronauts would land near the LM Shelter in an LM Taxi while a third astronaut remained in lunar orbit on board an Extended Capability CSM (XCSM) with an independent space endurance of 45 days. The surface astronauts would place their LM Taxi in "hibernation" and use the LM Shelter as their base of operations for 14 days of exploration. A lunar day-night period lasts about 28 days at most sites, so if they landed at local dawn they would leave the lunar surface at local dusk.

The SAA Program Office solicited comment on its plans from Bellcomm, NASA Headquarters' Washington, DC-based Apollo planning contractor. On 4 April 1966, Bellcomm engineer P. W. Conrad (not to be confused with astronaut Charles "Pete" Conrad) wrote a brief memorandum in which he proposed that the AS-511 and AS-512 missions be merged.

Conrad wrote that AS-511 did not need an LM Lab: its CSM could carry the cameras, film, sensors, and magnetic tape it would need for lunar-orbital mapping. He noted also that, in the SAA Program plan, the AS-512 CSM would be a mere "escort" for the LM Shelter, leaving its crew with relatively few meaningful duties. A mission in which a CSM bearing mapping instrumentation carried the LM Shelter to the Moon would keep its crew productively occupied, Conrad argued, and would free up a Saturn V, a CSM, and an LM Lab for other SAA missions.

He examined two possible profiles for the combined mission. In the first, which Conrad called "direct descent," the CSM would release the unmanned LM Shelter immediately following the last SPS course-correction burn en route to the Moon. The LM Shelter would fall toward the Moon's nearside without entering orbit. Fifty thousand feet above its target landing area, it would automatically ignite its Descent Propulsion System (DPS) engine to decelerate, hover until it found a safe spot, and land.

The piloted CSM, meanwhile, would pass over one of the lunar poles and fire its SPS behind the Moon to perform Lunar Orbit Insertion (LOI); that is, it would slow down so that the Moon's gravity could capture it into polar mapping orbit.

As the CSM orbited, the Moon would revolve beneath it. If it were a Block II CSM with 14-day endurance, it would orbit the Moon for from five to eight days. After about seven days, the CSM would pass over half the Moon's surface and map about one quarter in daylight.

If it were an XCSM, it would orbit for about 28 days. After 14 days, it would pass over the entire lunar surface and map half in daylight. At the end of 28 days, it would pass over the entire lunar surface twice and map the entire surface in daylight. At the planned end of its time in lunar polar orbit - or sooner, if some fault developed that required an early Earth return - the XCSM would ignite its SPS behind the Moon to depart lunar polar orbit for Earth.

Conrad's second combined mission profile would see the LM Shelter remain docked to the CSM until some time after LOI. The CSM would ignite its SPS to slow itself and the LM Shelter so that the Moon's gravity could capture the docked spacecraft into polar orbit, then the crew would turn CSM-mounted cameras and sensors toward the moon.

As the CSM and LM Shelter orbited over the lunar poles, the Moon would revolve beneath them, so that within a few days of LOI the LM Shelter's nearside target landing site would move into position for descent and landing. The LM Shelter would then undock from the CSM and automatically ignite its DPS to begin descent over the Moon's farside hemisphere about 180° of longitude from its landing site. It would fire the DPS again close to the landing site to carry out powered descent, hover, and landing. The CSM astronauts, meanwhile, would continue their lunar-orbital mapping mission.

Conrad acknowledged that both scenarios had their advantages and disadvantages. Direct descent would require that the LM Shelter carry extra landing propellants, which might limit the mass of exploration equipment and life support consumables it could place on the Moon. This might in turn limit the scope of the two-week exploration it was meant to support. In addition, the LM Shelter's DPS would not be available as an SPS backup or supplement if an abort were declared before LOI or in lunar orbit.

On the plus side, relieving the CSM of the LM Shelter's mass ahead of LOI would reduce the quantity of propellants the SPS would need to expend to accomplish LOI. The mass freed up by reducing the CSM's propellant load could be applied to additional CSM cameras, film, sensors, magnetic tape, and life support consumables.

Retaining the LM Shelter until after LOI would maximize its payload mass, but would also demand more LOI propellants for the SPS. This might lead to a reduction in the mass that could be devoted to cameras, film, sensors, tape, and life support consumables on board the CSM. On the other hand, the LM Shelter DPS would remain available as a backup or supplement to the SPS at least through LOI and, in almost all cases, for several days thereafter.

The SAA Program evolved rapidly. Conrad's proposal appears, however, not to have exerted much influence on SAA planners.

More consequential by far was the AS-204/Apollo 1 fire (27 January 1967), which killed astronauts Gus Grissom, Ed White, and Roger Chaffee. The fire, which revealed fundamental flaws in Apollo Program quality-control and contractor oversight, undermined support in Congress for NASA and, along with LM development delays, put off the first piloted lunar landing until July 1969. All six piloted Moon landings took place within the Apollo Program, and neither an Apollo lunar polar orbit mission nor a surface stay longer than about three days was accomplished.

The Saturn V rocket designated AS-511 in Conrad's memo launched the Apollo 16 lunar landing mission in April 1972. By then, NASA had changed its designation to SA-511. The SA-512 Saturn V launched Apollo 17, the final lunar landing mission, in December 1972, and SA-513 launched the Earth-orbital Skylab Orbital Workshop, the sole surviving remnant of what had been the SAA Program, in May 1973.

A lunar polar orbiter would have to wait until 1994, when the Ballistic Missile Defense Organization in the United States launched the 424-kilogram Clementine spacecraft (25 January 1994). The Department of Defense spacecraft followed a circuitous route to the Moon, at last arriving in mapping orbit on 19 February 1994. Though it accomplished a science mission, Clementine was conceived as a test of sensors and other technologies that would be used to detect and intercept nuclear-tipped missiles launched against the United States.

In an experiment using Earth-based radar, Clementine found the first indications of hydrogen concentrations in permanently shadowed craters near the Moon's poles. These were widely interpreted as signs of water ice, though the quantity of ice and its exact location could not be reliably determined. Clementine mapped the Moon until 3 May 1994, when it left lunar polar orbit bound for the near-Earth asteroid 1620 Geographos. A malfunction on 7 May 1994 caused Clementine to expend its propellant, however, scrubbing the asteroid flyby.

Japan's SELENE/Kaguya lunar polar orbiter with one of its two sub-satellites (center right). The spacecraft orbited the Moon from 3 October 2007 through 10 June 2009. Image credit: JAXA
NASA had sought to launch a robotic lunar polar orbiter since the 1960s; not until 7 January 1998, however, did the Lunar Prospector mission begin. Lunar Prospector reached lunar polar orbit on 11 January 1998 and mapped the Moon until it was intentionally deorbited on 31 January 1999. The spacecraft crashed near the Moon's south pole, where it had detected more signs of water ice in permanently shadowed craters.

Since Lunar Prospector, the United States, Europe, Japan, China, and India have all launched automated spacecraft into lunar polar orbit. As of May 2018, however, only one (NASA's Lunar Reconnaissance Orbiter, launched 18 June 2009) continues to operate. New lunar polar orbiters are, however, in the planning and development stages: for example, the Republic of Korea (South Korea) plans to launch the Korean Pathfinder Lunar Orbiter in 2020.

Sources

"Combining Lunar Polar Orbit Mission with an Unmanned Landing, Case 218," P. W. Conrad, Bellcomm, Inc., 4 April 1966

Living and Working in Space: A History of Skylab, NASA SP-4298, W. David Compton and Charles Benson, NASA, 1983

Korea Aerospace Research Institute: Lunar Exploration (accessed 5 May 2018)

Related Posts

Space Station Resupply: The 1963 Plan to Turn the Apollo Spacecraft into a Space Freighter

After EMPIRE: Using Apollo Technology to Explore Mars and Venus (1965)

Rocket Belts and Rocket Chairs: Lunar Flying Units

"Assuming That Everything Goes Perfectly Well in the Apollo Program. . ." (1967)

"A True Gateway": Robert Gilruth's June 1968 Space Station Presentation

Lunar GAS (1987)
Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Luděk Pešek's lunar expedition was intended to alight in Sinus Medii, a relatively flat region NASA would in fact select as an alternate landing site for early Apollo missions. In his book, Pešek generated drama by landing his eight-man crew off-course in rugged, unstable terrain between Reaumur and Flammarion. Image credit: Defense Mapping Agency/U.S. Geological Survey
In the 1969-1973 period, the post-Apollo era of robotic planetary reconnaissance was only beginning. The National Geographic Society wanted to give its members a preview, so it turned to Luděk Pešek. Born in Czechoslovakia in 1919, Pešek was out of his home country when Warsaw Pact tanks crushed the 1968 Prague Spring. Rather than return home to tyranny, he took up residence in Switzerland and became a Swiss citizen.

Luděk Pešek's photorealistic paintings of planets and moons dominated the August 1970 and February 1973 issues of National Geographic magazine. The 1970 magazine took in the entire Solar System. It bore on its cover Pešek's painting of Saturn as seen from its moon Titan. The 1973 issue celebrated the discoveries scientists had made using cameras on the Mars probe Mariner 9, the first spacecraft to orbit another planet. The magazine included as a special supplement an airbrushed map of Mars based on images from Mariner 9 and Earth-based telescopes. The map's reverse side featured Pešek's impression of the surface of Mars during a dust storm. It was probably the last great artistic rendering of Mars's surface before Viking 1, the first successful automated Mars lander, touched down in Chryse Planitia on 20 July 1976.

In 1964, as the real-life Moon Race between the Soviet Union and the United States gathered pace, Pešek had written a short novel about a lunar expedition. It was published first in the Federal Republic of Germany (West Germany) in 1967, then in the United States as Log of a Moon Expedition in 1969, a few months before the Apollo 11 Lunar Module Eagle became the first manned spacecraft to land on the moon.

Pešek's account now reads like alternate history. In some respects, his expedition plan resembles the Lunar Surface Rendezvous (LSR) Apollo mission mode the Jet Propulsion Laboratory (JPL) proposed in 1961-1962. LSR aimed to accomplish the Apollo manned moon landing using technology derived from the planned automated Surveyor soft-lander.

In JPL's LSR scenario, several automated landers would touch down on the Moon before any humans arrived. The first lander to reach the site would carry scientific instruments, a TV camera, and a homing beacon. After engineers and scientists used its data to certify the site as safe for further landings, other Surveyor-derived landers would touch down nearby. Their combined cargo would amount to three or four solid-propellant rocket motors, a robot rover with a mechanical arm, and an unmanned crew capsule with space for up to three astronauts, an Earth-atmosphere reentry heat shield, and parachutes. Controllers on Earth would guide the rover as it collected each rocket motor in turn and attached it to the lander bearing the crew capsule.

After JPL's lander/crew capsule combination was ready, an identical crew capsule on a Surveyor-derived lander would depart Earth bearing up to three astronauts. With help from homing beacons on the robot landers, it would slow its descent by firing solid-propellant rocket motors identical to those attached to the lander/crew capsule on the Moon. The astronauts would then transfer to the waiting lander/crew capsule and ignite its solid-propellant rocket motors to begin their return to Earth. Nearing Earth, they would cast off the lander and spent rocket motors and position their capsule for reentry.

Although billed in the U.S. at the time of its publication as a book for children, it is hard to believe that Log of a Moon Expedition earned much affection from that hard-to-please audience. This might account for the fact that it is not well known today. Pešek's tale reads like a technical paper told through a first-person narrator. Though fiction, its many technical details make it fair game for discussion in this blog.

Pešek's lunar program began with several years of hardware development and testing and at least four precursor lunar flights. An automated sample-returner collected rock samples at the proposed landing site and returned them to Earth for engineering analysis. Meanwhile, at least one automated spacecraft and at least two piloted expeditions (designated KM I and KM II) imaged the Moon's surface from lunar orbit.

Pešek considered the first piloted Moon landing to be the first step in Project Alpha, the intensive exploration of the entire Solar System by astronauts. He did not specify which country or consortium would carry out Project Alpha, nor did he provide a location for "Earth Control," the equivalent of NASA's Mission Control Center in Houston, ESA's European Space Operations Centre in Darmstadt, or the Flight Control Center near Moscow.

Spacecraft KM III. Image credit: Luděk Pešek/Alfred A. Knopf, Jr.
Pešek dispatched his lunar spacecraft, which he dubbed KM III, to Sinus Medii (Central Bay), a patch of relatively smooth, relatively flat mare ("sea") terrain at the center of the Moon's Earth-facing Nearside hemisphere. KM III was streamlined, with tail fins, short wings, a pointed nose, and at least one tail-mounted chemical-propellant rocket engine. Its pressurized cabin housed padded "anti-gravity" (acceleration) couches for eight men, an airlock, a radio/meteoroid-monitoring radar station, and an impressive array of stores and equipment, including at least 16 180-pound steel-shelled space suits (two for each expedition member). KM III was designed to land upright, with its nose pointed at the black lunar sky, on "stilts" that extended from its tail fins.

Before KM III left Earth, three automated cargo landers landed in Sinus Medii. Designated S 1, S 2, and S 3, they set down in a triangular pattern about 15 miles wide. Fat drums about 45 feet tall with silver-and-gray dome-shaped tops, the cargo landers each contained scientific equipment, tools, sturdy electricity-powered tractors for lunar surface transport, construction materials, a pressurized living volume stocked with air, water, and food, and, most important, a 40 tons of Earth-return propellant for KM III, which would land on the Moon with nearly dry tanks. Forty tons of propellant was sufficient to launch KM III off the Moon and place it on course for Earth.

Cargo lander S2. Image credit: Luděk Pešek/Alfred A. Knopf, Jr.
The expedition was planned to last eight Earth days. KM III was meant to land at the center of the S 1-S 2-S 3 triangle just after lunar dawn. Pešek wrote that the expedition included enough supplies to remain on the Moon for 14 Earth days (about one lunar daylight period), but that it could not stay past lunar sunset.

This was because the landers and tractors drew electricity from batteries kept charged by dish-shaped solar concentrators. Silver dishes would focus sunlight onto a boiler containing a working fluid that would turn to gas, move through pipes to a turbine generator with would make electricity, pass through radiators to shed heat and return to liquid form, and then return to the boiler to begin the cycle again.

Pešek did not give his intrepid lunar explorers names. Instead, they had three-letter "shortwave radio" designations. CAP was the calm, stoic leader of the expedition, while DOC, the narrator, was the "documenter" and photographer. MEC was the wise-cracking mechanic and navigator, PHY the expedition doctor, and RNT the radio and TV engineer. The expedition included three scientists: GEO, a geologist; AST, an astrophysicist specializing in radiation; and SEL, a selenologist ("Moon scientist").

The lunar expedition crew wore cumbersome steel Moon suits. They were prone to inexplicable oxygen regulator malfunctions and featured awkward sanitary arrangements. The numeral "5" on this suit's backpack identifies its wearer as MEC. Image credit: Luděk Pešek/Alfred A. Knopf, Jr.
Murphy's Law ruled Pešek's lunar expedition. Trouble began even before KM III left Earth. The S 1, S 2, and S 3 landers formed a triangle as planned, but its center was about 20 miles south of the intended target zone. This placed it uncomfortably close to rocky, rifted terrain between the craters Reaumur and Flammarion. Despite this, Earth Control decided to launch KM III on schedule.

The explorers did not pilot their spacecraft during descent to the Moon: instead, they strapped into their couches so that they could withstand KM III's rapid deceleration. The spacecraft's guidance system locked automatically onto the cargo lander homing beacons and steered it to a landing.

At touchdown, KM III released a "natrium" (sodium) cloud that fluoresced in lunar dawn light, permitting Earth-based telescopic observers to confirm its location on the lunar surface. As they waited for the sodium cloud to disperse so that they could see outside, the explorers worried that they had landed off target. Their radio could not pick up the homing radio beacon from S 2 and S 3's signal was very weak. In addition, the ground was apparently less stable than expected: KM III had an alarming tendency to list to one side. The crew extended the landing stilt on that side slightly to keep their spacecraft level.

When the shadowy landscape around KM III became visible outside the viewports, the terrain was unfamiliar. No elevated surface features should have been visible, yet there was a 190-foot-tall hill a few hundred yards to the north and a taller ridge beyond that. They named the former Revelation Hill. As the gravity of their predicament became clear, they dubbed the latter Disappointment Ridge.

CAP and DOC donned their cumbersome armored Moon suits and took humankind's first small steps on another world. Pešek wrote that, when they shook hands outside KM III, they felt as though they were "congratulating mankind." They then inspected KM III's landing stilts. All were sunk into the rock more deeply than expected. The stilt on the side toward which their spacecraft listed was extended to half its total length.

Soon after CAP and DOC climbed back inside KM III, Earth Control confirmed that the same navigational error that had affected the cargo landers had caused their spacecraft to land at least 20 miles southwest of its target. This placed KM III entirely outside the triangle. S 3, most northerly of the three cargo landers, was out of reach at a distance of at least 35 miles.

In addition, obstacles blocked the way to all three landers. KM III had landed at a straight-line distance of about 17 miles from S 1. A three-man sortie party consisting of DOC, RNT, and AST wandered at least 20 miles through a maze of small craters and rifts before turning back to KM III empty handed.

On the way home, the radio signal from KM III abruptly broke off and the party became lost. AST's oxygen system malfunctioned, so he became exhausted and had to be carried. They abandoned a large camera and other equipment. Fearing for the lives of his companions, AST begged to be left behind.

Fortunately, as the situation grew desperate, DOC spotted a signal flare on the horizon. On course once again, they soon resumed radio contact with KM III, where the main radio transmitter had been down for four hours.

S 2, just five miles away, was behind Disappointment Ridge on the far side of a jagged rift up to 65 feet wide and 150 feet deep. The rift, which began close to Reaumur crater, ran for many miles, often through rugged terrain, so could not be circumvented. S 2 was, nevertheless, judged to be the most easily accessible of the three pre-landed cargo landers.

To help ensure that the KM III crew could reach at least one cargo lander, Earth Control hurriedly dispatched two backup cargo landers designated S 4 and S 5. After flights lasting 70 hours, they alighted south of KM III, on the same side of the rift and ridges as the piloted lander. This should have made them easy to reach; however, they set down in terrain even more rugged and inhospitable than that separating KM III from S 1 and S 2.

By that point, the crew of KM III had abandoned all scientific exploration so that they could focus on saving themselves. Displaying his artistic bent, Pešek described the length and slow motion of the shadows on the lunar surface and the mood they created among the explorers. As the Sun sank toward the horizon and shadows lengthened, the expedition became a perilous race against time.

The explorers confronted and defeated one challenge after another, pushing themselves and their equipment to their limits. They first injected "oxycrete," a specially constituted lunar concrete, under the sinking landing stilt to stabilize KM III.

Next, they set up a 15-foot-diameter solar concentrator near the lander to charge their batteries. They also erected a 130-foot-tall radio relay tower atop Revelation Hill so that they could communicate with S 2.

Pešek's brave crew climbed and found a pass through Disappointment Ridge, then found places where they could enter the rift and, after traveling some distance along its rocky, shadowed floor, climb out on its far side with the aid of ropes. They marked their way using red metal disks mounted on poles. At last reaching S 2, they activated its living quarters and unloaded tractor TK 2.

They were plagued with Moon suit oxygen regulators that functioned flawlessly in labs on Earth and in Earth orbit, but which failed inexplicably whenever they passed into cold shadow on the Moon. The curious malfunction was at first life-threatening - it allowed exhaled carbon dioxide to build up in the Moon suits, and probably accounted for AST's difficulties during the nightmarish trek home from S 1 - but through trial-and-error it become a mere persistent annoyance.

AST and CAP suffered injuries that left them unfit to do heavy work, and all the men suffered rashes and sores from wearing their Moon suits for far longer than originally planned. As they hiked and labored for long hours, they were obligated to try to sleep in them.

DOC was part of the three-man team that reached S 5 on foot, a grueling hike through 10 miles of boulders and steep hillocks. They barely managed to unload tractor TK 5 before S 5 tilted on unsteady ground and toppled into an "abyss." Soon after their close brush with catastrophe, DOC called the Moon "a world of death" that could "not be underestimated for a minute."

Nevertheless, retrieval of TK 5 marked a turning point for the Moon explorers. Availability of TK 5 on the same side of the rift as KM III permitted the crew at last to devise a plan for refueling their spacecraft. They would load 650-pound, six-foot-long propellant tanks from S 2 onto TK 2 and transport them to the rift. The tanks would then be transferred to buckets hanging from an aerial tramway intended originally for unspecified selenological studies, and finally to TK 5 for the slow, slippery climb over Disappointment Ridge to KM III.

TK 2 and TK 5 could each carry up to 20 propellant tanks at a time, and the tramway buckets could move 20 tanks across the rift in one hour. Twenty tanks had a mass of about 6.5 tons, so about six trips were required to transfer from S 2 the 40 tons of propellants KM III needed to return to Earth.

The challenges did not end - TK 2 became stuck, meteoroids damaged KM III's solar concentrator, the aerial tramway nearly collapsed into the rift and had to be moved, and KM III began again to list to one side as propellants filled its tanks - yet Pešek's intrepid lunar explorers won through. With the glaring Sun touching the horizon and small features of the landscape casting long shadows, KM III lifted off with just hours to spare.

Sources

Log of a Moon Expedition, Luděk Pešek, Alfred A. Knopf Publishers, 1969

Man-to-the-Moon and Return Mission Utilizing Lunar-Surface Rendezvous, Technical Memorandum No. 33-53, P. Buwalda, W. Downhower, P. Eckman, E. Pounder, R. Rieder, and F. Sola, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 3 August 1961

"Man-on-the-Moon and Return Mission Utilizing Lunar-Surface Rendezvous," J. Small & W. Downhower, Jet Propulsion Laboratory; paper presented at the American Rocket Society Lunar Missions Meeting Held in Cleveland, Ohio, 17-19 July 1962

Ludek Pesek: Space Artist (accessed 10 April 2018) 

More Information

Space Race: The Notorious 1962 Proposal to Launch an Astronaut on a One-Way Trip to the Moon

Plush Bug, Economy Bug, Shoestring Bug (1961)

Around the Moon in 80 Hours (1958)
Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Image credit: Turner Entertainment/Metro Goldwyn Mayer
The amazing film 2001: A Space Odyssey premiered in Washington, DC, on this date in 1968. In 2016 I wrote a series of posts about the film and how existing and foreseeable space technology might yet make the journeys it depicts possible. Enjoy!

Could the Space Voyages in the Film and Novel "2001: A Space Odyssey" Really Happen? (Part 1)

Could the Space Voyages in the Film and Novel "2001: A Space Odyssey" Really Happen? (Part 2)

Could the Space Voyages in the Film and Novel "2001: A Space Odyssey" Really Happen? (Part 3)

Image credit: Turner Entertainment/Metro Goldwyn Mayer
Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
ISS, Earth, and Moon. Image credit: NASA
In August 1992, I was a new contractor employee at NASA's Johnson Space Center (JSC) in Houston, Texas. NASA JSC was at that time reeling from cuts in the Space Station Freedom (SSF) Program. At the same time, JSC engineers were trying to reconcile themselves to the agreement U.S. President George H. W. Bush and Russian President Boris Yeltsin had concluded in Moscow on 17 June 1992. The agreement called for a U.S. astronaut to live and work on board Russia's Mir space station, a Russian cosmonaut to fly on a U.S. Space Shuttle Orbiter, and a Shuttle Orbiter to dock with the Russian Space Station Mir, the first element of which had been launched by the Soviet Union in 1986.

In addition, NASA had paid Russia $1 million to assess use of a series of three-person Soyuz spacecraft as SSF lifeboats until a U.S. lifeboat could be built, and to look at possible U.S. purchase of other Russian-developed space technology (for example, the docking unit built for the Soviet Buran Shuttle, which was based on a U.S. design developed for the 1975 Apollo-Soyuz Program and the Soviet design proposed for the abortive Shuttle-Salyut Program).

The Soyuz lifeboat was not intended to transport a crew to SSF. Instead, it would launch to SSF, which would circle Earth in an orbit inclined 28.5 degrees to Earth's equator, from U.S. soil in a Shuttle Orbiter payload bay or atop an expendable U.S. rocket. In November 1992, a NASA-Russia team traveled to Australia to assess its wide open spaces as possible emergency landing sites for Soyuz lifeboats.

Just before the joint team toured Australia, voters in the U.S. went to the polls to elect William Clinton as their President. NASA JSC trembled - many employed there as Federal civil servants and contractors felt sure that President Clinton would end SSF. In fact, he did just that, but he did not end the Space Station Program. Clinton also retained NASA Administrator Dan Goldin, an appointee of President Bush.

In March 1993 - 25 years ago next month - Clinton ordered NASA to provide three new, lower-cost designs for a U.S. space Station and tasked his Vice President, Al Gore, with overseeing the redesign. Gore appointed a committee to assess the three redesign options NASA would develop.

Also in March 1993, Yuri Koptev, director of the newly formed Russian Space Agency, and Yuri Semenov, director of Russia's chief piloted spaceflight design bureau, NPO Energia, wrote to NASA Administrator Goldin to formally propose the merger of the U.S. station with Russia's planned Mir-2 station. The Russian Federation was broke, so unless it could find a new funding source, Mir-2 would never fly.

In addition, Russian space engineers were going unpaid. It seemed likely that, if they could not work on Russian space hardware, they would sell their expertise abroad to the highest bidder. This could lead to world-wide missile proliferation at a time when the Russian nuclear arsenal was judged by many to be poorly supervised.

The U.S. House of Representatives nearly killed NASA's space station on 23 June 1993; by a single vote it survived in the NASA Fiscal Year 1994 budget. Meanwhile, the proposal to merge the U.S. station and Mir-2 gained momentum. A major sticking point was the orbit in which the station would be assembled. Nevertheless, as I celebrated a year of work at NASA JSC, I became increasingly confident that the joint station would be built. Space science arguments seemed not to move the Congress; Russian involvement, on the other hand, gave the station a geopolitical purpose Congress seemed ready to endorse. The U.S.-Russian space station plan became a reality in November 1993; at the same time, NASA and Russia expanded the Bush-Yeltsin agreement to include multiple U.S. Shuttle flights to Mir.

The International Space Station (ISS) would be built with contributions from the U.S., Russia, Canada, the European Space Agency, and Japan in an orbit inclined 51.6 degrees relative to the equator - close to the latitude of Baikonur Cosmodrome. This enabled Soyuz to default to its role as a space station crew transport. It would carry international crews to ISS, where it would remain docked for up to six months. If it became necessary to abandon ISS, Soyuz would land in long-established landing zones on Russian soil. The U.S. Space Shuttle could reach that orbit with U.S., Canadian, European, and Japanese station components, but with a diminished payload.

I need not go into the history of the Shuttle-Mir Program and ISS Program in great detail. Suffice it to say that the U.S.-Russian relationship was rocky at times. NASA, of course, had no choice but to make it work.

In March 1995, I left NASA JSC to edit Star Date magazine, but NASA was not through with me; I was hired to write a series of publications for NASA JSC and NASA Headquarters. I quit Star Date after editing two issues and in effect became my own company, just like Lockheed Martin, SpaceX, or Boeing. I retained a NASA JSC badge until 2001 and even worked for several months as a short-term Federal civil servant with an office in Building 2, which houses NASA JSC Public Affairs. I was offered a permanent job - editing the employee newspaper, The Space News Roundup - but ran away screaming for reasons I will not go into here.

In April 1996, on my own dime, I toured Russian space facilities and met Russian space engineering students, space engineers, cosmonauts, and Russian Space Agency officials as part of the first Friends and Partners in Space Workshop. I wrote about it for Astronomy magazine. Almost all the Russians I met were cordial, welcoming, and open.

At this moment, when the U.S. teeters on the edge of crisis, one detail in particular stands out in my memory. At the close of the workshop, we had dinner in the revolving restaurant high above Moscow on the Ostankino TV Tower. As the restaurant turned, we could see different parts of the city spread out below us. A closed-off neighborhood of mansions came into view. It stood out against the more ramshackle buildings of Soviet-era Moscow. I asked one of our student guides about it. He hesitated, looking nervous, but also a little disgusted. "Those are the mansions of the oligarchs," he said. "We do not talk about those."

In the mid-1990s, many hoped that Russia might become a functioning democracy, but that hope faded in the first decade of the present century. The corrupt oligarchs finished building their mansions and took power, led by Vladimir Putin. They began to "meddle" in the affairs of other nations, starting with countries that had been part of the old Soviet Union. As the years passed, their methods became more sophisticated and were expanded beyond the old Soviet sphere. Meddling became outright attack on democratic institutions.

At some point, many histories will be written about this period. I do not propose to attempt that here. Suffice it to say that the U.S. has been attacked and remains under attack. It will win through, but doing so will likely require drastic (though lawful) measures.

Among these could be the end of the U.S.-Russian partnership in space. So far, little has emerged to suggest that NASA and Russia might be in conflict (at least, they appear to be in no greater state of conflict than they have been before); however, if they are not in conflict, perhaps they should be.

I believe it is time to consider closing the hatches between the Russian Service Module and the U.S.-owned FGB and cutting all the connections that bind the U.S. and Russian segments together. Russia has attacked our most fundamental institutions; how can we continue to work with them off the Earth? Discarding the Russian segment would be a highly visible sign that the U.S. and its partners are not prepared to tolerate Putin's actions.

I am, of course, aware that U.S. piloted spaceflight is highly dependent on Russia. Russian Soyuz spacecraft transport Station crews, and Russian propellants and rocket motors keep ISS in orbit. I am also aware that, in the past, the U.S. has been able to respond with remarkable rapidity to attacks waged against it. I think we could do so again.

For example, SpaceX and Boeing could be required to accelerate their piloted spaceflight efforts - to put on hold, for the good of the nation and as a sign of their patriotism, other work until their piloted Earth-orbital spacecraft can be certified as flightworthy.

Modifications to one or all of the various commercial logistics vehicles that visit ISS might enable them to raise its orbit. The U.S. Air Force X-37 spacecraft might also be modified.

I expect there are other options as well. Perhaps Europe, Canada, and Japan could draw upon their technology and experience to provide options; for example, NASA might pay ESA to revive the ATV cargo vehicle. Perhaps ESA would do so for free; after all, among its members are nations that have also been subjected to Russian attack.

Protest and punishment mean nothing unless they inconvenience those they are directed against. The Russian segment would suffer an acute electricity shortage. Losing power from the U.S. arrays might, in fact, kill Russia's part of ISS, and with it, perhaps, its piloted space program.

There was a time when that knowledge would have led me to reconsider what I propose here. For me, however, that time is now over.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
The Earth-Moon binary as imaged by the Near Earth Asteroid Rendezvous (NEAR) Shoemaker Discovery mission during its Earth gravity-assist flyby on 23 January 1998. Image credit: Johns Hopkins University Applied Physics Laboratory/NASA
On 29 July 1958, President Dwight Eisenhower signed into law legislation creating the civilian National Aeronautics and Space Administration (NASA). Eisenhower saw NASA as a way of separating the serious military business of nuclear missile and spy satellite development from "stunts" aimed at responding to Soviet prestige victories in space. In the old General's view, such stunts included launching a man into Earth orbit.

In a presentation to the American Astronautical Society at Stanford University the following month, Dandridge Cole and Donald Muir, engineers with The Martin Company in Denver, Colorado, detailed how NASA might launch humans around Earth's moon. First, however, they warned that the "Russians may have such a long lead. . .that they will have made landings on the [M]oon before. . .our first circumlunar flight." They predicted that the Soviet Union would be capable of a piloted circumlunar flight in 1963, four years before the United States. In a dig at President Eisenhower, Cole and Muir added that "on the technical side, at least, there seems to be no reason why this goal could not be accomplished [by the U.S.] by 1963."

They outlined a general plan of piloted spaceflight development. Within four years, Cole and Muir wrote, the first American would be launched into Earth orbit using a missile already under development. The same missile might then be used to launch components for a circumlunar flight into Earth orbit, components which would be joined to form a cislunar spacecraft. Alternately (and this was the method they preferred), missiles might be clustered to form a single large rocket capable of launching the circumlunar spacecraft from Earth's surface on a direct path around the Moon.

The four-stage "Missile B" rocket would launch the circumlunar astronaut around the Moon. Image credit: The Martin Company
The Martin engineers estimated that a 160,000-pound-thrust U.S. launch vehicle ("Missile A") could become available by 1963; to create their circumlunar launcher ("Missile B"), they proposed clustering four Missile A's to create a first stage capable of generating 610,000 pounds of thrust. Missile B's second stage would comprise a single Missile A, and its third and fourth stages a 40,000-pound-thrust rocket and a 10,000-pound-thrust rocket, respectively.

Though a two-week circumlunar trip would require the least energy (and thus the smallest launch vehicle), Cole and Muir opted for a trip lasting three or four days to protect the astronaut's psychological health. "For one man alone in a tiny sealed capsule on a journey of 250,000 miles from the [E]arth," they explained, "the difference between three or four days and two weeks might approach infinity."

Reduced trip time also would slash the quantity of life-support consumables the pilot would need. The amount of energy required to reduce the trip time from two weeks to three or four days would be modest, they estimated, though reducing it still further would demand a prohibitive amount of energy (and thus an undesirably large launch vehicle).

The bucket-shaped circumlunar capsule would weigh 9000 pounds. Cole and Muir may have based its shape on nuclear warhead delivery systems under development at the time they wrote their paper.

The capsule's circumlunar path would have three parts. The outbound leg would require 35.4 hours. It would be followed by a 9.3-hour "hyperbola" past the Moon. The capsule would pass just 10 miles over the unknown Farside, where the "synthesizing power of the human brain [would] permit collection of more accurate and more meaningful data than could be obtained by photographic techniques alone." The third leg of the mission, the 35.4-hour fall back to Earth, would mirror the outbound leg. The circumlunar voyager would be treated to a magnificent view of Earth rising over the lunar horizon as he began his journey home.

Cutaway of Cole and Muir's circumlunar capsule showing the water-filled "tub" for protecting the astronaut from high deceleration during Earth-atmosphere reentry. A variant of the circumlunar capsule would serve as the first lunar lander. Image credit: The Martin Company
The heat shield for high-speed Earth-atmosphere reentry would weigh just 500 pounds, Cole and Muir estimated. As Earth filled the capsule's view ports, the pilot's "bathtub-type" couch would fill with water to cushion him from reentry deceleration. A lid with a window would prevent the water from escaping in zero-G before deceleration commenced. Cole and Muir wrote that, because "the water would be needed only in the last phase of the trip, it could be reserve drinking or washing water." Despite the potential weight savings, they hesitated "to suggest that it might be water. . .already used for drinking or washing."

The capsule would enter Earth's atmosphere blunt nose first. As deceleration began, the bathtub couch would pivot so that the pilot faced the capsule's flat aft end. This would cause him to feel capsule deceleration through his back, enabling him to withstand greater sustained deceleration loads.

After a fiery atmosphere reentry, the capsule would deploy fins for steering. Landing would be by parachute at sea or on U.S. soil near a waiting recovery crew.

Cole and Muir expected that the the piloted circumlunar journey would merely open the door to lunar exploration. A series of automated lunar landings would soon follow it. Some would deliver automated scientific instruments that would explore the lunar environment, while others would stockpile propellants and supplies on the surface.

Toward the end of the 1960s decade, the same multi-part "Missile B" rocket design that launched the circumlunar flight would launch a piloted lunar lander. The pre-landed supplies and propellants would, Cole and Muir wrote, enable use of a variant of the circumlunar spacecraft as a small, low-cost lunar lander. Landers would set down on the Moon with nearly empty propellant tanks, refuel using the pre-landed propellants, and draw on pre-landed supplies to enable ever-longer surface stays. A temporary lunar base would be established by 1970, and permanent bases permitting "extensive exploration of the major areas of the [M]oon's surface" would follow soon after.

Cole and Muir ended their paper with rousing words. "Time may well prove," they wrote, "that the man who climbs out of [the circumlunar] capsule to receive the cheers of the recovery crew. . .made a voyage of greater importance to the human race than that of Columbus."

Source

"Around the Moon in 80 Hours," D. Cole and D. Muir, Advances in Astronautical Sciences, Volume 3, Proceedings of the Western Regional Meeting of the American Astronautical Society, 18-19 August 1958, pp. 27-1 through 27-30, 1958

More Information

"He Who Controls the Moon Controls the Earth" (1958)

Plush Bug, Economy Bug, Shoestring Bug, (1961)

Harold Urey and the Moon (1961)

Space Race: The Notorious 1962 Proposal to Launch an Astronaut on a One-Way Trip to the Moon (1962)

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
The Lunar Module was a two-stage spacecraft. This image, captured from television transmitted to Earth from the parked Apollo 16 Lunar Roving Vehicle, shows the moment the ascent stage engine of the Lunar Module Orion ignited. Hot gas from the engine plume blasted thermal insulation for kilometers in all directions. Image credit: NASA
On the Earth's moon, nothing is a valuable resource. The lunar surface is a nearly pure vacuum, making it a potentially important site for high-tech industrial processes. The total amount of gas spread over the Moon's entire surface - which has an area greater than that of Africa - is less than 50 metric tons. The Moon owes its lack of atmosphere to the Sun. Solar wind and ultraviolet light ionize gas atoms, making them susceptible to transport by the interplanetary magnetic field. Half the atoms escape into space and the rest are driven into the lunar surface material.

In 1974, in the pages of the prestigious publication Nature, Richard Vondrak of NASA's Goddard Research Center in Greenbelt, Maryland, pointed out that lunar vacuum "is a fragile state that could be modified by human activity." He urged that it be "treated carefully if it is to be preserved."

At the time Vondrak wrote, his concern was not entirely academic. In the early 1970s, not a few engineers within NASA expected that the Space Shuttle would lead to a return to the Moon in the 1980s. Lunar outposts where experiments in mining and industrial processes could be conducted would follow soon after.

Vondrak estimated that, owing to life support system and space suit leakage and release of rocket exhaust, each of the six Apollo landing missions had doubled the mass of the Moon's atmosphere. The atmosphere returned to normal after a month, however, leading Vondrak to assert that "small lunar colonies" and modest mining would "present no lasting hazard to the lunar environment."

If, however, more "vigorous" human activity pumped up the lunar atmosphere to a mass of one billion metric tons, solar wind and ultraviolet light would be unable to ionize more than its outermost fringe. The thin lunar atmosphere would then persist for centuries even if no more gas were added, Vondrak wrote.

Vondrak looked briefly at the far-out prospect of creating an Earth-density atmosphere on the Moon by vaporizing oxygen-rich lunar dirt using nuclear blasts. He estimated that this would need 10,000 times the U.S. nuclear arsenal, making it "impractical that such an amount of gas could be generated by current technology."

Source

"Creation of an Artificial Lunar Atmosphere," Richard R. Vondrak, Nature, Vol. 248, 19 April 1974, pp. 657-659

More Information

There's a Hell of a Good World Next Door

The Eighth Continent

Rocket Belts and Rocket Chairs: Lunar Flying Units

"A Continuing Aspect of Human Endeavor": Bellcomm's January 1968 Lunar Exploration Plan
Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Gateway to the lunar surface base. Image credit: Boeing.
As some of you are aware, at the end of December I left my job as archivist, map librarian, and outreach guy at the U.S. Geological Survey's Astrogeology Science Center in Flagstaff, Arizona. At the beginning of January, I started a new job as Community Outreach Specialist at the Lunar Reconnaissance Orbiter Camera Science Operations Center (LROC SOC), which is part of the School of Earth and Space Exploration (SESE) at Arizona State University in Tempe, a suburb of Phoenix, Arizona.

I am currently working remotely and part-time - we'll move down to Phoenix in a few months and I'll go full-time - yet I find myself putting in a lot of extra hours to get to know LRO, LROC, SESE, and ASU as quickly as I can. This is, after all, a dream job for me. I had long hoped that I might become part of a space mission team, and now I've made it happen.

This is a big life-change, which unfortunately means that I have neglected this blog. I've stopped scratching items off my list of planned posts and stopped suddenly writing impromptu new posts. I've managed a couple of omnibus posts bringing together in chronological order links to past posts and also an opinion piece, but I completed my most recent meaty new post just before Christmas. I have completed a large portion of a post on early NASA circumlunar plans, but it has stalled for the time being.

It might sound as though I plan to abandon writing about spaceflight outside the boundaries of my LROC job. That is, however, not correct. In fact, my new job has me so fired up that I can foresee a day when I'll be settled in to it and have a lot of excess energy to expend. It feels like someone turned the oxygen back on.

I am looking for ways to make this blog serve two purposes: first, to be a really nifty blog that teaches people about cool space history stuff and, second, to help me learn things applicable to my LROC job. So - you heard it here first - I hereby declare 2018 to be The Spaceflight History Year of the Moon Base.

I know what you are thinking now. "Yeah, right, he's making promises again and he ain't gonna come through. He'll get distracted and it'll be like, 'Hey, look, Mars is at opposition!'" (More likely, it'll be like, "Dammit, kiddo, pack up your books, the moving van is due in 15 minutes!")

So, getting back to this moon base thing. You see, several years ago I contracted with NASA to write a lunar counterpart to my book Humans to Mars. Then my wife was killed and my daughter gravely injured in a car crash, putting everything on hold, NASA changed historians, and when I asked them about getting started on Humans to the Moon again, I found that they had lost interest.

I had, however, by then done much of my research. I still have the documents I collected, and now the time seems right to put them to good use.

Just to get you in the proper frame of mind, here are links to the few moon base-type posts that are already part of this blog. Enjoy!

"A Continuing Aspect of Human Endeavor": Bellcomm's January 1968 Lunar Exploration Program

As Gemini Was to an Apollo Lunar Landing by 1970, So Apollo Would Be to a Permanent Lunar Base in 1980 (1968)

SEI Swan Song: International Lunar Resources Exploration Concept (1993)
Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Image credit: NASA
Periodically, I write a post in which I list in chronological order links to posts in this blog which I originally presented in no particular order. This post brings together posts with the label "Failure Was An Option," and is offered as a memorial to the 17 persons who have died on board NASA spacecraft.

The end of January and beginning of February is a time of remembrance for NASA piloted spaceflight. On 27 January 1967, astronauts Gus Grissom, Edward White, and Roger Chaffee lost their lives in the Apollo 1 fire. On 28 January 1986, the crew of Space Shuttle mission STS-51L (Dick Scobee, Michael Smith, Ellison Onizuka, Judith Resnik, Ron McNair, Gregory Jarvis, and Christa McAuliffe) perished after the Orbiter Challenger disintegrated 73 seconds after launch. On 1 February 2003, the STS-107 crew (Rick Husband, William McCool, Michael Anderson, Kalpana Chawla, David Brown, Laurel Clark, and Ilan Ramon) died when the Orbiter Columbia broke up during reentry after a nearly 16-day mission in Earth orbit.

Piloted spaceflight has never been routine, though sometimes, for reasons that have little to do with best practices in space engineering, it has unwisely been treated that way. Throughout the history of U.S. piloted spaceflight, however, NASA and its contractors typically have tried to anticipate possible malfunctions and, where possible, develop emergency procedures.

What If an Apollo Saturn Rocket Exploded on the Launch Pad? (1965)

What If Apollo Astronauts Could Not Ride the Saturn V Rocket? (1965)

North American Aviation's 1965 Plan to Rescue Apollo Astronauts Stranded in Lunar Orbit

What If an Apollo Lunar Module Ran Low on Fuel and Aborted Its Moon Landing? (1966)

If an Apollo Lunar Module Crashed on the Moon, Could NASA Investigate the Cause? (1967)

What If Apollo Astronauts Became Stranded in Lunar Orbit? (1968)

A CSM-Only Back-Up Plan for the Apollo 13 Mission to the Moon (1970)

What If a Crew Became Stranded On Board the Skylab Space Station? (1972)

What If a Space Shuttle Orbiter Had to Ditch? (1975)

George Landwehr von Pragenau's Quest for a Stronger, Safer Space Shuttle (1984)

What If a Shuttle Orbiter Struck a Bird? (1988)

NASA's 1992 Plan to Land Soyuz Space Station Lifeboats in Australia
Read Full Article

Read for later

Articles marked as Favorite are saved for later viewing.
close
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

Separate tags by commas
To access this feature, please upgrade your account.
Start your free month
Free Preview