Loading...

Follow Veterinary Key Points on Feedspot


Valid
or
Continue with Google
Continue with Facebook
Ginger is a 7-year-old female spayed golden retriever who presented to MedVet Toledo with a chronic non-healing open skin wound over the right elbow. (Fig. 1) 

Fig. 1: Ginger
The owner adopted Ginger 1.5 years prior to presentation and the wound was present at that time. Ginger was otherwise healthy with no major medical issues. Serous fluid drained from the wound occasionally. Antibiotic therapy previously prescribed did not result in significant improvement of the wound.

Physical examination of Ginger was normal except for a large (8cm diameter) open wound over the right elbow that appeared to be a decubital ulcer. (Fig. 2) 
Fig. 2: The non-healing chronic open wound over the right elbow on Ginger
Extensive fibrotic scar tissue was present around the periphery of the circular wound, and unhealthy granulation tissue was seen in the wound center. Little to no discharge was present on the wound surface.

A fine needle aspirate of the peripheral scar tissue was performed to rule out neoplasia and the cytology results indicated chronic inflammation. Routine preoperative CBC and serum chemistry profile were normal. The plan was to anesthetize Ginger, perform an extensive surgical debridement of the fibrotic peripheral tissues, and reconstruct the skin using an axial pattern skin flap. 

Ginger was anesthetized and the right elbow and surrounding skin clipped and prepared for aseptic surgery. The donut shaped abnormal scar tissue was removed using blunt and sharp dissection. (Fig. 3) 
Fig. 3: The right elbow of Ginger immediately after surgical debridement of the chronic wound. 
During this dissection it became clear that the tissue was highly vascularized. Hemostasis was difficult and bleeding became brisk throughout the dissected area. The hemorrhage was controlled with electrocautery and direct pressure. We elected to delay the skin flap reconstruction so that open wound management with tie-over bandages could be used on the elbow to allow the debrided area to be in more optimal condition for the definitive reconstruction procedure. (for more information see: tie-over bandages)

One week after the surgical debridement Ginger was re-admitted to the hospital for the skin flap procedure. Ginger was placed under general anesthesia and a thoracodorsal axial pattern skin flap was performed to reconstruct the elbow decubitalulcer. (Fig. 4)
(for more information see: axial pattern skin flaps
Fig. 4: Completed thoracodorsal axial pattern flap reconstruction of the elbow on Ginger.
White arrow indicates direction of transfer of the rectangular skin flap harvested from skin over the scapula.
Complete coverage of the wound was achieved with the skin flap. A spica bandage was placed over the leg and thorax to protect the incisions and Ginger was recovered from anesthesia. 

The following day Ginger’s bandage was changed and she was discharged from the hospital. Bandage changes occurred every 2-3 days until the incisions were healed and staples removed. (Fig. 5) 
Fig. 5: Appearance of the surgical incisions on Ginger 10 days postoperatively.
Ginger finally was discharged with no rechecks necessary unless problems arose. However 5 months later she represented to MedVet Toledo for problems unrelated to her elbow. The owner reported that since the skin flap reconstruction Ginger had been much more comfortable and mobile. Ginger’s skin flap had grown a thick, bushy amount of hair. There was redundant skin at the elbow but the overall cosmetic appearance was quite satisfactory. (Fig. 6) In general the owner was very pleased with the end result of the reconstruction.
Fig. 6: Appearance of Ginger's right elbow area 5 months after reconstruction.
Chronic wounds of the elbow in dogs are one of the most difficult to manage. Skin tension, excessive motion, and trauma to the area combine to interfere with healing in this part of the body. Debridement and local advancement of skin over the defect is generally unrewarding for reconstruction, particularly if it results in a suture line directly over the olecranon. Skin flap techniques that bring healthy, robust tissue into the site without creating a suture line over the olecranon, such as an axial pattern flap, is more likely to be successful.

Several aspects of the postoperative care are key to the success of this procedure. A well-padded bandage to protect and cushion the skin flap is mandatory for at least 10-14 days postoperatively. Exercise restriction is also important along with frequent postoperative rechecks to monitor for flap survival and healing. 

One clinical study of 10 dogs having thoracodorsal axial pattern flaps found complications to be common but good functional and cosmetic outcome resulted in 6 of 7 dogs long term follow up. (1)

References

1. Aper R, Smeak, D:  Complications and Outcome After Thoracodorsal Axial Pattern Flap Reconstruction of Forelimb Skin Defects in 10 Dogs, 1989–2001 32:4, 2003, Pages 378-384.
Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Indications

Thoracic drain tubes are indicated for animals with disorders of the thoracic cavity  that cause accumulation of air or fluid in the pleural space. Some examples are: pneumothorax due to trauma or spontaneous causes such as emphysematous bullae, or pleural effusion due to infection (pyothorax) or neoplasia. If repeated drainage of the thorax is anticipated for palliative care of the patient, a thoracic drain is more effective and less painful for the patient than repeated thoracocentesis with a needle or catheter. A properly performed thoracic drain tube placement is a safe and effective means of managing patients with acute or chronic pleural disorders.

Technique

Equipment
Basic surgical pack
Red rubber catheters (8 – 20 Fr),
or Argyle catheters with trocar (same sizes)
3-way stopcocks
Christmas tree adapters
Syringes (12 – 60mls)
Bandage materials
Antibiotic ointment
Suture material  (2-0 or 3-0 monofilament non-absorbable)

Place the animal under general anesthesia and prepare the lateral thorax for aseptic surgery. Make a small (2-3 cm) skin incision at the 10th intercostal space.
Incise through the subcutaneous tissue and the lattisimus dorsi muscle. Use a Carmalt or Pean forcep to create a tunnel underneath the lattisimus dorsi muscle from the skin incision to the 8th intercostal space. Grasp the tip of a red rubber catheter with a Carmalt forcep or use an Argyle trocar catheter. (Fig. 1)
Fig 1: The end of a red rubber catheter is grasped within a Carmalt clamp
from: Bateman SW, et.al. Emergency and Critical Care Techniques and Nutrition. 
In: Saunders Manual of Small Animal Practice. 3rd edition, 
Birchard and Sherding, eds., Elsevier, St. Louis, 2006. Pg. 29
Insert the tip of the tube into the skin incision and advance it through the tissue tunnel to the level of the 8th intercostal space.(Fig 2)
Fig. 2: The red rubber tube and Carmalt clamp are advanced from the 10th to the 8th intercostal space
Firmly grasp the tube and insert through the chest wall with a forceful but controlled effort. (Fig. 3)
Fig. 3: Cross sectional view of Carmalt clamp and chest tube entering the pleural cavity through the  intercostal space.
from: Bateman SW, et.al. Emergency and Critical Care Techniques and Nutrition. In: Saunders Manual of Small Animal Practice. 3rd edition, Birchard and Sherding, eds., Elsevier, St. Louis, 2006. Pg. 29
Once the tube has penetrated the chest wall, advance it into the pleural space. If using the Argyle tube, slide the trocar out of the tube and then slide the tube inside the pleural cavity.(Fig. 4)
Fig. 4: Sequence of steps(A-D) for inserting an Argyle thoracic drain tube with inner trocar into the chest cavity.
from: Crisp MS, Buffington CA. Critical Care Techniques. In: Saunders Manual of Small Animal Practice. 2nd edition, Birchard and Sherding, eds., Elsevier, St. Louis, 2000, pg. 21.
If using a red rubber catheter and forceps, after entering the chest open the forceps, slide the catheter into the pleural cavity, then remove the forceps from the incision. Promptly place a clamp on the tube after entering the chest to prevent pneumonthorax.

Place a 3-way stopcock on the end of the tube(Fig. 5); a Christmas tree adapter may be necessary to fit the stopcock to the flared end of the tube. 
Fig. 5: Stopcock secured to the end of the chest tube with wire; heavy
suture can also be used.
Use large suture or wire to secure the stopcock and adapter to the tube and place a purse string and finger trap pattern suture to secure the tube to the skin (Fig. 6).   
Fig. 6: Secure the thoracic drain tube to the skin with a purse string /finger trap suture combination.
A “C” clamp can also be placed on the tube for added safety in case the stopcock should become dislodged.  Apply antibiotic ointment to the tube entry site in the skin and protect the tube on the patient with a bandage.

Postoperative Care

Obtain radiographs of the thorax to ensure correct placement of the tube.(Fig. 7)
Fig. 7: Lateral thoracic radiograph of a cat with a thoracic drain tube in place.
Patients with thoracic drain tubes require 24 hour monitoring. If the tube becomes damaged or the stopcock is dislodged, immediate pneumothorax will occur and could be life threatening. Change the chest bandage as needed and check the tube location to be sure it is not pulling out and that the stopcock and Christmas tree adapter are tight and not leaking. Place an Elizabethan collar on the animal if necessary.

Evacuation of air and/or fluid can be performed either manually or with a continuous suction device which, when connected to a source of negative pressure, allows for drainage of the thoracic cavity. In most animals intermittent manual drainage of the chest cavity is sufficient to keep the animal’s respiratory status stable. 

In some cases a sudden increase in the amount of air being pulled from the drain tube can be due to a leak in the tube or its apparatus. Test the integrity of the tube by clamping the tube close to the patient and try applying negative pressure to the stopcock with a syringe. If air is easily withdrawn, a leak is present. Check all connections for tightness and check the tube for cracks or holes allowing air to leak into the system.

In addition to other routine supportive care measures, analgesic therapy with a NSAID or opioid such as Tramadol is indicated due to the painful nature of the indwelling tube in the pleural space. The pleura is one of the most sensitive tissues in the body and the tube acts as a foreign body rubbing on the pleural membranes. 

Thoracic drain tubes can be left in the patient for several days or even a few weeks at a time depending on the need for continued drainage. Since dogs do not have a complete mediastinum, a unilateral tube is usually adequate for drainage of both sides of the pleural cavity. However in some cases, such as chronic pyothorax or chylothorax, fibrinous adhesions in the cavity can make the fluid loculated, decreasing the function of the tube. Bilateral tubes may then be necessary.

Remove the chest tube when the amount of fluid or air is minimal. The chest tube acts as a foreign body in the pleural space and can create 1-2 mls/kg/24 hours of fluid. After removal of the tube apply antiobiotic ointment to the skin incision and keep the incision covered with a bandage for another 1-2 days.

References

Bateman SW, et.al. Emergency and Critical Care Techniques and Nutrition. In: Saunders Manual of Small Animal Practice. 3rd edition, Birchard and Sherding, eds., Elsevier, St. Louis, 2006. Pg. 29
Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
V.M. Kristiansen, A. Nødtvedt, A.M. Breen, et. al. Effect of ovariohysterectomy at the time of tumor removal in dogs with benign mammary tumors and hyperplastic lesions: A randomized controlled clinical trial 
J Vet Intern Med 2013;27:935–942 

Summary

The authors of this study sought to answer the following question: is there a clinical benefit to performing ovariohysterectomy (OHE) at the time of benign mammary tumor removal in dogs.  Their hypothesis was that removal of ovarian hormones by OHE would decrease the development of new benign mammary tumors and thus would have important clinical ramifications. In a randomized, controlled clinical trial, dogs having surgery to remove benign mammary tumors were placed in one of 2 groups: those also having OHE performed at the time of tumor removal (n=42), and those not having OHE performed (n=42). All tumors were analyzed by histopathology. The dogs were followed for at least 80 months and long term follow-up information obtained either by phone calls to owners or by recheck examinations by veterinarians. 

New benign mammary tumors developed in 64% of in tact dogs compared to 36% of dogs having OHE. This was statistically significant and showed the clinical benefit of concomitant OHE with benign mammary tumor removal. Nine of the intact dogs also went on to develop disorders of the ovaries or uterus, such as pyometra. There was no difference in survival data between the 2 groups. 

Commentary

For years surgeons have recommended OHE in combination with removal of mammary tumors, not because of any proven benefit related to the mammary neoplasia, but to prevent other disorders such as pyometra. This study provides evidence of the benefit of performing OHE in combination with mammary tumor removal. The authors make the case that since dogs that develop benign mammary tumors are also at increased risk of developing malignant mammary tumors, prevention of future malignant tumors may also be a positive factor of OHE.

The lack of difference in survival between the two groups may be misleading since some of the dogs were euthanized. The many and varied issues surrounding the owner’s decision to euthanize make the survival data, in the author’s words, a “soft and biased endpoint in the study.” In contrast, the different rates of tumor recurrence between the 2 groups is objective data in which statistical significance was found.

Conclusions

This prospective randomized study provides objective evidence of the benefit of OHE in dogs being surgically treated for mammary tumors. Clinicians can recommend OHE at the time of mammary tumor removal as evidence based medicine approach to treatment, not just in the prevention of reproductive disorders such as pyometra and ovarian tumors, but in prevention of benign mammary tumors.
Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Case Report
Tank is a 7 year old male castrated English bulldog that presented for chronic skin fold dermatitis secondary to screw tail conformation.(Fig.1) 
Fig. 1: Tank, a 7 year old male castrated English Bulldog
The dog was showing signs of pruritis and pain in the tail area for several months. Physical examination revealed patchy partial alopecia of the lateral trunk and evidence of pyoderma in the skin folds associated with an ingrown tail.(Fig.2)
Fig. 2: The tail on Tank showing the typical screw  tail conformation
Preoperative thoracic radiographs showed no significant abnormalities. A radiograph of the caudal spine showed a typical abnormal tail anatomy common in bulldogs.
(Fig. 3) 
Fig. 3: Lateral radiograph of the caudal vertebrae on Tank showing the
abnormal coccygeal vertebrae. (arrow)
Pre-anesthetic CBC and serum chemistry profile on Tank were within normal limits. 

Surgical Procedure
Under general anesthesia, Tank was placed in sternal recumbency and the tail and adjacent skin was clipped and prepared for aseptic surgery. The anal sacs were expressed and a purse string suture was placed in the anus to prevent fecal contamination of the surgical site. Intravenous cephazolin was administered as a prophylactic antibiotic. 

The surgery was begun by making a cranial to caudal incision dorsally over the base of the tail.(Fig. 4) 
Fig. 4: The caudectomy on Tank began with an incision over the  dorsal aspect of the tail.
The tissues were dissected down to the bone by blunt and sharp dissection. After the soft tissues were dissected off, the coccygeal vertebrae were severed with a bone cutter and rongeurs.(Fig. 5)
Fig. 5: Appearance of surgical site after severing the coccygeal vertebrae. Arrow
indicates the cut edge of the vertebrae on the portion of tail to be removed.
The tail was then removed by extending the skin incisions ventrally on each side until the tail was no longer attached to the body.(Fig. 6)
Fig. 6: Surgical site after complete removal of the tail. Note the  cut
edge of the coccygeal vertebrae on the body (white arrow), and cut
edge of the coccygeal vertebrae on the excised tail (black arrow).
Care was taken not to injure the rectum which is just ventral to the tail. A Jackson-Pratt closed suction drain was placed in the deep aspect of the incision prior to closure. For more information on Jackson Pratt drains see: https://drstephenbirchard.blogspot.com/2014/03/jackson-pratt-drains-for-wounds-in-dog.html Excess skin was removed, and the surgical wound was closed in several layers: deep tissues with 2-0 PDS simple interrupted, subcutaneous tissues with 3-0 Monocryl simple interrupted, and the skin with 3-0 Monocryl simple interrupted. The purse string suture was removed. (Fig. 7)
Completed caudectomy on Tank including placement of the Jackson-Pratt drain.
Postoperatively Tank was given supportive care consisting of intravenous fluids, analgesic therapy, incision care and drain maintenance. Tank was discharged from the hospital the following day. Tank’s drain was removed 3 days postoperatively, and examination by the referring veterinarian 10 days postoperatively found satisfactory healing of the incision and improvement of his clinical signs. A follow-up phone call to the owner 1 month after surgery found Tank to continue doing well with no further pruritis or evidence of infection in the tail area.

Discussion
Intertriginous dermatoses, or skin fold pyoderma, is a well recognized disorder caused by excessive skin folds in various regions in dogs, such as nasal, lip, perivulvular, and the secondary to the screw-tail, or ingrown tail abnormality in bulldogs. Redundant skin in these areas leads to skin friction, excessive moisture, and poor air circulation. Trapped skin secretions are fertile ground for surface bacteria and yeast to establish infection. 

Medical treatment consisting of hair clipping, medicated soaps and shampoos, and topical and systemic antibiotics may improve the condition, but surgical resection of the excessive skin is necessary to achieve successful long-term resolution. In bulldogs with ingrown tail, amputation of the tail is the most effective method of treating this form of intertriginous dermatoses. However, detailed descriptions of the technique for removal of the very abnormal bulldog tail are not widely available in the veterinary literature. 

Postoperative complications after caudectomy for ingrown tail were analyzed in one clinical study of 17 dogs. (1) Short-term complications were rare but included postoperative wound infection and changes in defecation behavior. Long-term complications were not seen and the authors stated that the procedure effectively resolved clinical signs in the dogs studied. 

References
1. Knight SM1, Radlinsky MG, Cornell KK, Schmiedt CW. Postoperative complications associated with caudectomy in brachycephalic dogs with ingrown tails. J Am Anim Hosp Assoc. 2013 Jul-Aug;49(4):237-42. 
Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Case Report

Cass is a 2 year old spayed female who presented to the emergency service after been bitten by another dog. She had no pertinent history of other health problems. On physical examination Cass had a palpable soft tissue subcutaneous swelling on the left lateral abdomen. A defect in the abdominal wall was palpable deep to the swelling and viscera were thought to be in the subcutaneous space. 

Plain radiographs of the abdomen confirmed a left lateral abdominal hernia. (Fig. 1) No other radiographic abnormalities were found. 
Fig. 1; Ventrodorsal radiograph of Cass showing the hernia of the left lateral abdomen (arrows).
Cass was initially treated with supportive care consisting of intravenous fluids with a balanced electrolyte solution, analgesics, and antibiotics. Preoperative CBC and serum chemistry profile were within normal limits. Cass was placed under general anesthesia and the ventral abdomen was clipped and prepared for aseptic surgery. (Fig. 2) 
Fig. 2: Cass in dorsal recumbency after clipping and prepping for  abdominal surgery.
Note the bulge on the left lateral abdomen at the site of the hernia.
A ventral midline abdominal approach was made. On thorough exploratory of all abdominal structures herniation of a portion of jejunum was found in a left sided abdominal wall defect.(Fig. 3, 4) 
Fig. 3: Intraoperative view of the abdominal cavity on Cass. (Head is to the left.)
Note herniated bowel and omentum (arrow).
Fig. 4: Same intraoperative view as figure 3 after reduction of the hernia showing the muscular defect.
Gentle traction on the herniated bowel reduced the hernia and the bowel mesentery was bruised but all tissues were viable. The abdominal muscle defect was closed from within the abdominal cavity with 2-0 PDS simple continuous pattern.(Fig. 5) 
Fig. 5: Same intraoperative view as figures 3 and 4 showing closure of the hernia.
The ventral abdominal incision was closed routinely. 

Postoperatively supportive care (IV fluids, analgesics, and antibiotics) was continued. Cass made an uneventful recovery and was discharged the day after surgery. At suture removal 10 days postoperatively Cass was doing well.

Discussion

In animals with severe abdominal trauma, hernias can be missed on initial physical examination. Serial, thorough physical examinations and careful analysis of abdominal imaging is recommended to fully assess trauma patients. Intestine and omentum were the 2 most commonly herniated structures in the study previously mentioned. (1)

Bite wounds were the most common cause of traumatic abdominal hernias in one study, with vehicular trauma being the next most common cause. (1) This is in contrast to an older study that found blunt trauma to be the primary cause of traumatic hernias.(2) Additional injuries, such as bowel perforation, are common complications of abdominal hernias. 

Key Point: Dogs and cats with acute traumatic abdominal hernias should have a complete abdominal exploratory via routine ventral approach. The hernias can be repaired from within the peritoneal cavity by closing the affected interior muscle layers. (3)


References
1. Shaw, Scott P; Rozanski, Elizabeth A; Rush, John E. Traumatic body wall herniation in 36 dogs and cats. JAAHA 39:35-45 2003.
2. Waldron DR, Hedlung CS, Pechman R. Abdominal hernias in dogs and cats: a review of 24 cases. JAAHA, 22:817-822,1986 
3. Smeak, DD. Abdominal wall reconstruction and hernias. In: Veterinary Surgery Small Animal, eds. Tobias KM, Johnston, SA. Elsevier, St. Louis, pg. 1368.

Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Indications

Cesarian section (C-section) in dogs and cats is indicated for a variety of reasons such as uterine inertia, oversized neonates, narrowed maternal pelvic canal, and others. Fetal dystocia is common in brachycephalic breeds such as Bulldogs, prompting some breeders or owners to schedule the C-section as an elective procedure in these kinds of dogs. Evidence fetal death or uterine infection would also warrant immediate C-section. The readers are referred to other publications for more information on dystocia in dogs and cats.(1)

Cesarian section is a safe surgical procedure and one study found fetal survival actually slightly higher with C-section than natural birth.(2) For information on pre-operative assessment and anesthesia for C-section see Veterinary Key Points blog by Dr. Lisa Ebner posted June 14, 2016.

Surgical Procedure

The abdomen is clipped and an initial scrub performed prior to beginning anesthesia. This minimizes the time spent under anesthesia helping to prevent depression of the puppies or kittens. Perform other pre-operative and anesthestic protocol as described in the Veterinary Key Points blog by Dr. Lisa Ebner posted June 14, 2016 on anesthesia for C-section.

Place the animal in dorsal recumbancy and perform a routine ventral abdominal midline approach. Be careful to avoid trauma to the enlarged uterus when entering the peritoneal cavity. Exteriorize the entire uterus including both uterine horns. (Fig. 1) This simple step is important to relieve pressure on the caudal vena cava by the very enlarged uterus and therefore improve venous return to the heart. Isolate the uterus from the peritoneal cavity with moistened abdominal sponges.
Fig. 1: Gravid uterus exteriorized from the abdominal cavity
Make an incision in the ventral aspect of the uterine body just proximal to the bifurcation of the horns.(3)  Take care to avoid trauma to the puppies inside the uterus. Once inside the uterine lumen, carefully begin removing puppies one by one.(Fig. 2)
Fig. 2: Begin removing puppies from the incision in the uterine body midline.
from: Sicard GK, Fingland RB. Surgery of the ovaries and uterus. In: Saunders Manual of Small Animal Practice, 3rd edition, Birchard SJ, Sherding RG, eds. Elsevier, St. Louis, 2006
Begin with puppies in the uterine body, then milk them down each horn to the incision and then remove. The uterine incision may have to be extended into the horns to reach and remove all puppies.

When each puppy is removed from the uterus, gently tear the placental membrane and remove it from the fetus.(Fig. 3) 
Fig. 3: After removing puppy from the uterus gently open and peel away placental membranes
from: Sicard GK, Fingland RB. Surgery of the ovaries and uterus. In: Saunders Manual of Small Animal Practice, 3rd edition, Birchard SJ, Sherding RG, eds. Elsevier, St. Louis, 2006
Take care to avoid spillage of fluids into the peritoneal cavity. A convenient area to perforate the thin membrane is at the ventral neck of the puppy. Once the membrane has been removed, place 2 small hemostatic forceps on the umbilical cord, transect the cord between the clamps, and hand the puppy off to an assistant.(Fig.4a, b ) 
Fig. 4a: After removing placental membranes from the puppy, double clamp
the umbilical cord with small hemostats, cut between them, and pass the
puppy off to an assistant.


Fig. 4b: Double clamp umbilical cord and cut between the clamps.
from: Sicard GK, Fingland RB. Surgery of the ovaries and uterus. In: Saunders Manual of Small Animal Practice, 3rd edition, Birchard SJ, Sherding RG, eds. Elsevier, St. Louis, 2006
The assistant will then ligate the cord with absorbable suture and begin routine care to stimulate respirations and assessment 
(see http://drstephenbirchard.blogspot.com/2016/06/anesthesia-for-cesarian-section-in-dogs.html).

Before uterine closure, be sure to check the entire uterus including the body and vagina for any remaining fetuses. Routine ovariohysterectomy can be performed now if requested by the owner. If the uterus is to be preserved, close the uterine incision with absorbable suture (Monocryl or PDS) in a Cushing pattern.  Lavage the abdomen with warm sterile saline if spillage of uterine contents has occurred into the peritoneal cavity. Close the abdominal incision routinely. Intradermal closure of the skin layer is preferred to avoid the irritation associated with skin sutures and nursing puppies.

Postoperative Care

When the bitch is fully recovered from anesthesia the puppies can be placed with her and encouraged to nurse. Carefully monitor the puppies and bitch to be sure she does not accidentally injure the pups. Soon after anesthetic recovery is it usually best to discharge the dog and her puppies back to the home and educate the owner on care of the bitch and puppies. See blog on C-section anesthesia for postoperative analgesia of the mother.

References

1. Graves T. Diseases of the ovaries and uterus. In: Saunders Manual of Small Animal Practice, 3rd edition, Birchard SJ, Sherding RG, eds. Elsevier, St. Louis, 2006, pgs. 987-991.
2. Moon PF, Erb HN, Ludders JW, Gleed RD, Pascoe PJ Perioperative management and mortality rates of dogs undergoing cesarean section in the United States and Canada
JAVMA [1998, 213(3):365-369
3. Sicard GK, Fingland RB. Surgery of the ovaries and uterus. In: Saunders Manual of Small Animal Practice, 3rd edition, Birchard SJ, Sherding RG, eds. Elsevier, St. Louis, 2006, pgs. 996-999.
Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Laryngeal paralysis is a functional disorder of the larynx resulting in decreased abduction of the arytenoid cartilages during inspiration in dogs and cats. This causes airway obstruction, dyspnea and in some cases life threatening hypoxia. Clinical studies of various aspects of the disorder have improved our understanding of laryngeal paralysis. Key elements of some of these studies are listed and briefly described below.

Esophageal Dysfunction

Barium swallow in a dog with significant esophageal pathology
Idiopathic laryngeal paralysis is a disorder affecting more than just the larynx. Studies have conclusively shown that esophageal motility is abnormal in dogs with laryngeal paralysis.(1) This is a significant finding for many reasons, not the least of which is the relationship of esophageal dysfunction with aspiration pneumonia that commonly occurs after surgical correction by arytenoid lateralization. Dogs with esophageal or gastric disorders that predispose them to regurgitation can increase their chance of aspirating and developing pneumonia postoperatively.

When evaluating dogs with laryngeal paralysis, be sure to get a complete history with emphasis on the animal’s ability to prehend food and swallow normally.  Inquire about any regurgitation and vomiting. Obtain thoracic radiographs to evaluate for aspiration pneumonia and megaesophagus. If the dog appears to be a significant risk for aspiration, consider permanent tracheostomy as an alternative to arytenoid lateralization to reduce the risk of pneumonia. Metoclopramide can be administered to laryngeal paralysis dogs as a premedication to reduce the risk of regurgitation during general anesthesia. 

Polyneuropathy

More evidence that laryngeal paralysis is a complicated disorder affecting multiple organ systems are the studies showing its association with peripheral neuropathy.(2,3)  Several clinical investigations have documented generalized neuropathy in dogs that have laryngeal paralysis, emphasizing the need to thoroughly evaluate the neurologic status of these animals. Owners should be educated about this association, particularly in dogs that are not obviously affected by neuropathy when first presenting for their upper airway obstruction. Clinical signs of neurologic deficits may become evident sometime after treatment of the laryngeal paralysis.

Doxapram

An essential part of the diagnosis of laryngeal paralysis is the sedated laryngeal exam. Laryngeal function is assessed by watching the arytenoid cartilages abduct during inspiration. Since laryngeal function may be affected by the sedative drugs administered for the examination, a false positive result can occur if the sedation is excessive. Erratic respirations can also occur, complicating the assessment. Doxapram has been shown to assist in the exam by stimulating respiration allowing a more consistent and accurate evaluation of function.(4) The dosage of doxapram is: 1-5 mg/kg IV.

 Minimal Dissection Lateralization

The original surgical description of arytenoid lateralization included an extensive amount of dissection that is no longer felt to be necessary. After completely disarticulating the crico-arytenoid joint, i.e., the muscular process of the arytenoid from its articulation to the cricoid cartilage, the sesamoid band connecting the arytenoids' corniculate processes was also severed. This was a difficult step in the procedure because of poor exposure and in some cases resulted in perforation of the pharynx. 
Diagrammatic view of sharp incision of the inter-arytenoid sesamoid band.
This step in the surgical procedure is no longer considered necessary by many surgeons.
(reprinted from: Fingland RB. Obstructive Upper Airway Disorders. Saunders Manual of Small Animal Practice, 3rd ed., Birchard and Sherding editors,  Figure 161-6, Elsevier, 2006, pg. 1657)
Satisfactory lateralization is possible by simply incising the joint capsule of the crico-arytenoid articulation and leaving the sesamoid band in tact. Low suture tension has also been shown to be an effective means of opening the rima glottis compared to high suture tension.(5) I have used this “minimal dissection” technique for several years now. It provides for adequate arytenoid abduction, helps to prevent over-correction, and has lessened the incidence of aspiration pneumonia in my experience.

The “Tie-Back” is Not For All Dogs

Although the arytenoid lateralization procedure continues to provide satisfactory treatment for many dogs with laryngeal paralysis, it is contraindicated in dogs that are high risk for aspiration pneumonia. Owners need to realize that the lateralization procedure does not make the larynx normal. It opens the airway and relieves obstruction but the larynx is fixed in its position and not capable of closing. If the epiglottis cannot completely cover the laryngeal opening during swallowing, aspiration is likely to occur. Also, as  discussed previously, esophageal dysfunction or any other cause of chronic regurgitation or vomiting (megaesophagus, gastric disorder, etc.) increases the likelihood of aspiration. In these dogs a permanent tracheostomy should be considered to relieve the airway obstruction. 
A recently performed permanent tracheostomy in a dog.

References

1. BJ. Stanley, JG Hauptman, MC Fritz, et. al.
Esophageal Dysfunction in Dogs with Idiopathic Laryngeal Paralysis: A Controlled Cohort Study. Veterinary Surgery Volume 39, Issue 2, pages 139–149.

2. Orla M. Mahony, Kim E. Knowles, Kyle G. Braund, et.al. Laryngeal Paralysis-Polyneuropathy Complex in Young Rottweilers. Journal of Veterinary Internal Medicine Volume 12, Issue 5, pages 330–337.

3. Braund KG, Shores A, Cochrane S, Forrester D, Kwiecien JM, Steiss JE. Laryngeal paralysis-polyneuropathy complex in young Dalmatians. American Journal of Veterinary Research 1994, 55(4):534-542.

4. Tobias KM1, Jackson AM, Harvey RC. Effects of doxapram HCl on laryngeal function of normal dogs and dogs with naturally occurring laryngeal paralysis. Vet Anaesth Analg.2004 Oct;31(4):258-63.

5. S Bureau, E Monnet. Effects of Suture Tension and Surgical Approach During Unilateral Arytenoid Lateralization on the Rima Glottidis in the Canine Larynx Veterinary Surgery Volume 31, Issue 6, pages 589–595.


Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Permanent tracheostomy is a well-recognized surgical technique used in animals and humans as a salvage procedure to treat severe upper airway obstruction. Although the technique has been used for many years with success, there are many misconceptions among animal owners and veterinarians about the long-term care and complications. Many feel that dogs cannot have a good quality of life because of the problems associated with tracheostomy. Owners frequently expect that dogs with permanent tracheostomy will have an appliance, i.e. a metal or plastic tube that resides with in the trachea and needs constant care.

Indications for tracheostomy in dogs include: severe laryngeal obstruction due to laryngeal paralysis, collapse, neoplasia, or trauma, pharyngeal neoplasia that obstructs the larynx, and non-resectable proximal tracheal neoplasia.

Although cats may also develop disorders causing severe upper airway obstruction, permanent tracheostomy is associated with frequent, severe complications such as excessive mucous production and stoma stricture.(1) As a result, tracheostomy is rarely recommended in cats.

Preoperative Considerations

Dogs being considered for tracheostomy should be thoroughly evaluated with particular emphasis on the respiratory tract.  A complete history and physical examination followed by appropriate imaging such as thoracic radiographs are important before performing general anesthesia and surgery. Cervical radiographs and even tracheoscopy may be necessary to be certain that the respiratory tract downstream from the larynx is normal. Also, carefully examine the dogs’ ventral cervical area to determine suitability for creating a tracheostomy stoma. Some dogs, such as brachycephalic breeds, have very short necks with excessive skin that can cause problems with skin flaping over the stoma causing obstruction.

Surgical Technique

The dog is placed in ventral recumbency with the neck hyperextended over a soft towel and the front legs extended caudally. The ventral cervical area is clipped and prepared for aseptic surgery. A ventral midline skin incision is made from the larynx to just cranial to the manubrium.  The paired sternohyoideus muscles are divided on their midline using sharp dissection. A large horizontal mattress suture of 2-0 or 3-0 PDS is placed across the sternohyoideus muscles, dorsal to the trachea, to allow retraction of the muscles and cause ventral displacement of the trachea.(Fig. 1) 
Fig. 1: Ventral midline cervical approach for permanent tracheostomy.
The sternohyoideus muscles have been divided and a horizontal mattress suture
is being placed in the muscles to tuck the muscle under the trachea.
Care is taken to avoid trauma to the recurrent laryngeal nerves during passage of the suture. A rectangular window is created in the trachea from the 3rd to the 7thring (4 rings included in the tracheal opening).(Fig. 2) 
Fig. 2: The rectangular window is being created in the tracheal wall.
Note the endotracheal tube present in the tracheal lumen.
The tracheal incisions are begun by incising between rings 3 and 4, then between rings 7 and 8. Be careful not to puncture the cuff of the endotracheal tube when making the initial tracheal incisions. These parallel incisions are then connected using scissors to complete the rectangular shaped defect in the trachea.(Fig. 2)

Close the tracheal wall to the skin in a simple interrupted pattern to create the tracheostomy stoma. Excise a rectangular shaped section of skin on each side of the tracheostomy site to allow the skin incsion to match the rectangular window in the trachea. The suture bites of trachea include the cartilage, and the bites of the skin are placed split thickness, entering the dermal layer and exiting the epidermis.  This allows for accurate apposition of the epidermis to the tracheal mucosa. As in urethrostomy closure, take suture bites from inside out, i.e., start in the tracheal lumen and then take the bite of the skin. The corners of the window are closed first (Fig. 3,4); then the remaining areas are closed in a similar fashion.(Fig. 5) Absorbable suture such as 3-0 or 4-0 PDS is used to avoid having to remove them once the stoma has healed. The skin incisions cranial and caudal to the stoma are then closed routinely.
Fig. 3: The 4 corners of the rectangular tracheal window are closed first.
Note the "inside-out" sequence of suture placement.
Fig. 4: The corner sutures have been placed.

Fig. 6: Completed suture closure of the tracheal stoma. 
Postoperative Care

Alleviation of inspiratory dyspnea is immediate after permanent tracheostomy. See below video of an elderly labrador with laryngeal paralysis before and after permanent tracheostomy. Although laryngeal tie-back is the treatment of choice for most dogs with laryngeal paralysis, permanent tracheostomy was chosen in this dog due to high risk for aspiration pneumonia.
Laryngeal paralysis patient before and after permanent tracheostomy - YouTube
Besides routine postoperative care such as analgesics, cleansing of the stoma is important to prevent build up of discharge and debris. (Fig. 6) Gently wiping the skin around the stoma with moistened gauze sponges is sufficient.


Fig. 6: Typical appearance of a recently preformed permanent tracheostomy
in a Yorkshire Terrier with severe laryngeal collapse.
Owners should be advised to avoid putting anything inside of the trachea and to not use any irritating materials around the stoma such as peroxide or other antiseptics. Small amounts of a petroleum-based ointment (e.g., triple antibiotic ointment) can be placed on the skin around the stoma to prevent discharge from adhering to the skin and make cleaning easier. Discharge from the tracheal stoma tends to gradually decrease over the first few weeks postoperatively. Systemic antibiotics are not routinely prescribed since incisional infections are very rare.

Life Style Limitations
Dogs with a permanent tracheostomy cannot go swimming and should avoid very dusty environments or running in tall grass or weeds. These dogs will also will have difficulty barking or at least have a softer sound than pre-operatively. In rare cases dogs with long hair will need clipping of the hair around the stoma to prevent irritation of the tracheal mucosa and accumulation of debris.

Prognosis

Most dogs with permanent tracheostomy do well and have minimal chronic problems. The most common long-term postoperative problems are pneumonia and stricture of the stoma requiring surgical revision.(2) In a recent study sudden death occurred after tracheostomy in 5 of 19 dogs at variable times after surgery, presumably due to obstruction of the trachea although necropsy was not performed in any of the cases.(2)

Permanent tracheostomy is considered an appropriate surgical option for dogs with severe upper airway obstruction. Complications can occur but some, like stoma stricture and skin fold occlusion, can be treated by revision surgery. Owner education is important to explain potential risks and life style limitations.

References

1. Stepnik MW1, Mehl ML, Hardie EM et. al. Outcome of permanent tracheostomy for treatment of upper airway obstruction in cats: 21 cases (1990-2007). J Am Vet Med Assoc. 2009 Mar 1;234(5):638-43.


2. Lindsay L. Occhipinti and Joe G. Hauptman. Long-term outcome of permanent tracheostomies in dogs: 21 cases (2000–2012) Can Vet J. Apr 2014; 55(4): 357–360.
Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 
Case Report

A 7-year-old spayed female mixed breed dog named Lola presented with acute vomiting and rapid enlargement of a mass over her umbilicus.(Fig.1) 
Fig. 1: Lola, a 7 year old female spayed dog
The owners reported that she had a hernia there since birth but it just recently got much larger. The mass was soft, painful on palpation, and not reducible. An umbilical hernia containing abdominal viscera was suspected.

Plain film abdominal radiographs were obtained and confirmed an umbilical hernia with loops of intestine in the hernia sac. (Fig.2)  The remainder of the abdomen was radiographically within normal limits. 
Fig. 2: Lateral abdominal radiograph in Lola showing
an umbilical hernia with incarcerated bowel (arrow)
Complete blood count and serum chemistry profile were unremarkable. An intravenous catheter was placed and a balanced electrolyte solution administered to correct dehydration. Under general anesthesia the ventral abdomen was clipped and prepared for aseptic surgery. (Fig.3) 
Fig. 3: Appearance of the hernia in Lola after clipping for surgical repair
A ventral abdominal approach was performed with care taken to not injure structures within the hernia. A strangulated loop of jejunum was found in the hernia. (Fig.4) The remainder of the abdomen was normal. 
Fig. 4: Intraoperative photo of Lola during abdominal exploratory showing the
strangulated portion of jejunum after it was reduced.
The affected segment of intestine was resected and an end to end anastomosis performed (see http://drstephenbirchard.blogspot.com/2013/10/intestinal-anastomosis-made-simple.html for details on technique for intestinal anastomosis).  Debridement of the tissue edges of the hernia was not necessary and it was repaired as part of the routine linea alba closure with 2-0 PDS, simple continuous pattern. The remainder of the abdominal incision was closed routinely. Postoperative abdominal radiographs confirmed satisfactory closure of the hernia. (Fig. 5) 
Fig. 5: Lateral abdominal radiograph of Lola 1 day after repair of the umbilical hernia.
Lola recovered well from surgery and was released from the hospital 2 days postoperatively.

Discussion

Lola is an example of a dog with an incarcerated (non-reducible), and strangulated (loss of blood supply of the hernia contents) umbilical hernia. Umbilical hernias are common in dogs and cats but rarely do they contain intestine or other abdominal organs.(1) More commonly umbilical hernias are small and contain a portion of the falciform ligament or greater omentum. 

Plain film radiographs were diagnostic for the hernia in Lola. Ultrasonography can also be useful to determine if a hernia is present and if organs are located in the hernia sac. 

The clinical signs of acute vomiting and pain on palpation were suggestive of intestinal obstruction, and possibly strangulation. Vomiting was predictive of non-viable intestine in inguinal hernias in dogs in one study.(2) Emergency surgery is indicated when this type of hernia is suspected. 

In Lola the hernia repair was straightforward since adequate local tissues, i.e. rectus muscle fascia, was available for closure without tension across the suture line. Larger defects may require a muscle flap or mesh implant, such as polypropylene mesh, for effective repair. Mesh is well tolerated in dogs and provides a strong and stable closure for abdominal wall defects with minimal complications.(3)

Complications of hernia repair include pain, seroma, infection, reoccurrence and mesh rejection requiring removal.   However, complications are rare and the prognosis for successful repair of congenital and traumatic hernias is generally good. 

This is the first in a series of Veterinary Key Points blogs addressing congenital and acquired hernias in dogs and cats. Watch for future articles on other hernia types and their treatment.

References

1. Ruble RP, Hird DW. Congenital abnormalities in immature dogs from a pet store: 253 cases (1987-1988). J Am Vet Med Assoc. 202(4) 633-636, 1993

2. Water DJ, Roy RG , Stone EA. A retrospective study of inguinal hernia in 35 dogs. Vet Surg 22:44, 1993

3. Bowman K, Birchard SJ, Bright RM. Complications associated with implantation of polypropylene mesh in dogs and cats: A retrospective study of 21 cases (1984-1996). J Am An Hosp Assoc 34:225-233, 1998

Read Full Article
Visit website
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

Introduction
This is a brief description and video of lung lobectomy in a 14 year old male neutered West Highlight White Terrier named Chester.(Fig. 1) Chester presented for coughing for several weeks, and on plain film thoracic radiographs a mass was seen in the right middle lung lobe. (Fig. 2)
Fig. 1: Chester, a 14 yr old male neutered Westie diagnosed with a primary lung lobe tumor
Fig. 2a: Lateral thoracic radiograph of Chester showing a mass in the right middle lung lobe. (arrows)



Fig. 2b: Ventrodorsal thoracic radiograph of Chester showing the mass in the right middle lung lobe. (arrows)

Surgery
After inducing general anesthesia and placing the dog on a ventilator, a routine right 5th intercostal space thoracotomy was performed. A mass was found on the dorsal aspect of the right middle lung lobe. (Fig. 3)
Fig. 3: Right lateral thoracotomy exposing a neoplasm of the right middle lung lobe (black arrow) in Chester.
Dorsal is to the bottom of the photo.
A lobectomy of the affected lung lobe was performed using the TA 30 (V3) Surgical stapling device. (Fig. 4 and video)
Fig. 4: TA Surgical Stapling device.
(Blue cartridge is shown, white cartridge (V3) was used in the case
described here. (Medtronic.com)

West Highland White dog lung lobectomy video - YouTube


A thoracic drain tube was placed and the thoracotomy closed routinely.

Postoperative Care
The dog recovered well postoperatively and was given supportive care including intravenous fluids, analgesics, and monitoring of vital signs. Minimal amounts of air and fluid were recovered from the drain tube overnight. The drain tube was removed the following day and the dog discharged from the hospital. One week postoperatively the owner reports that Chester continues to do well at home. 

Histopathology of the mass revealed an adenosquamous carcinoma of the lung. Resection was felt to be complete with clean margins. Chester is currently receiving chemotherapy under the direction of our internist, Dr. Joanna Fry and Jessica Herzig, RVT. More updates to come!
Read Full Article
Visit website

Read for later

Articles marked as Favorite are saved for later viewing.
close
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

Separate tags by commas
To access this feature, please upgrade your account.
Start your free month
Free Preview