Loading...

Follow 7puzzleblog | Daily Number Puzzles on Feedspot

Continue with Google
Continue with Facebook
or

Valid

The Main Challenge

If you eliminated multiples of 3, 5 and 7 from this list:

12   14   18   21   25   28   30   33   35   36   40   42   44   48   54   55   56   60

which is the ONLY number that would remain?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd & 6th columns contain the following fourteen numbers:

2   7   10   16   30   33   36   40   45   48   49   54   64   70

How many of the numbers listed are NOT multiples of 6 or 7?

The Factors Challenge

Which of the following numbers are factors of 332?

4    6    8    10    12    14    16    18    None of them

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

100   101   102   103   104   105   106   107   108   109

#Numbers100to109

The Target Challenge

Can you arrive at 332 by inserting 2, 3, 4, 5 and 6 into the gaps below?

  •  (◯×◯)²+(double◯)³+(◯–◯)⁴ = 332

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

Here is an interesting logic puzzle for you to try.

Insert the numbers 1-9 into the correct positions in this 3-by-3 grid after studying the seven clues below. Each number should appear exactly once.

x              x              x

x              x              x

x              x              x

Here are the clues:

  1.  The 2 is directly left of the 1,
  2.  The 6 is directly right of the 7,
  3.  The 8 is directly above the 9,
  4.  The 9 is directly right of the 5,
  5.  The 3 is further left than the 7,
  6.  The 4 is directly below the 3,
  7.  The 5 is in the very central position of the grid.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 4th columns contain the following fourteen numbers:

3   6   13   20   21   22   27   42   55   56   60   63   72   77

What is the sum of the lowest five numbers listed?

The Factors Challenge

Which of the following numbers are factors of 331?

3    5    7    9    11    13    15    17    19    None of them

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which are the only TWO numbers it is possible to make from the list below?

60    61    62    63    64    65    66    67    68    69

#NumbersIn60s

The Target Challenge

Can you arrive at 331 by inserting 1, 3, 11, 13, 31 and 33 into the gaps below?

  •  (◯–◯)×◯+◯–◯–◯ = 331

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

This is a number trail involving ten arithmetical steps. Be careful with your calculations – and no calculators please!

Start with the number 40, then:

  • multiply by 4
  • +10%
  • subtract 15
  • divide by seven
  • add nine
  • 1/2 of this
  • +87
  • double this
  • –96
  • ÷10

What is your final answer?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 4th columns contain the following fourteen numbers:

3   6   13   20   21   22   27   42   55   56   60   63   72   77

What is the product of the highest number and lowest number?

The Factors Challenge

Which is the ONLY number below that is not a factor of 330?

2    3    5    6    9    10    11    15

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which FIVE numbers is it possible to make from the list below?

2    3    5    7    11    13    17    19    23    29

#PrimeNumbers

The Target Challenge

Can you arrive at 330 by inserting 3, 5, 10, 11 and 15 into the gaps below?

  •  ◯×◯×(◯–◯–◯) = 330

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

. . . is a Mathelona number puzzle where you must solve all four lines arithmetically by filling the 16 gaps below with digits 0-9.

Each digit 0-9 can only be inserted a maximum of TWICE in the whole puzzle:

◯  +  ◯   =     5     =   ◯  +  ◯
◯  +  ◯   =     3     =   ◯  –  ◯
◯  +  ◯   =    10    =   ◯  ×  ◯
◯  +  ◯   =     1     =   ◯  ÷  ◯

If you enjoyed this, click Mathelona for details of my number puzzle pocket book.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 5th & 7th columns contain the following fourteen numbers:

5   8   9   11   14   18   24   25   28   32   44   50   66   84

Which THREE numbers above 11 each become a multiple of 7 when 11 is subtracted from them?

The Factors Challenge

Which is the ONLY number below that is a factor of 329?

3    5    7    9    11    13    15    17

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which is the ONLY number it is possible to make from the list below?

1    4    9    16    25    36    49    64    81    100

#SquareNumbers

The Target Challenge

Can you arrive at 329 by inserting 1, 4, 9, 16 and 25 into the gaps below?

  •  ◯×◯×(◯+√◯)+◯ = 329

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

. . . will get you thinking of the 5- and 7-times tables, plus some addition.

What is the total of the first SEVEN whole numbers that have a 5 or 7 as part of their number or are multiples of 5 or 7?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 5th & 7th columns contain the following fourteen numbers:

5   8   9   11   14   18   24   25   28   32   44   50   66   84

Can you find four different numbers that have a sum of 100?

The Factors Challenge

Which of the following numbers are factors of 328?

2    3    4    5    6    7    8    9

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which are the only THREE numbers it is possible to make from the list below?

11    22    33    44    55    66    77    88    99    110

#11TimesTable

The Target Challenge

Can you arrive at 328 by inserting 1, 2, 3, 4 and 5 into the gaps below?

  •  (◯²+◯²)×(◯+◯)×◯ = 328

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

. . . is a tricky 5puzzle-style question that’s a real mouth-watering prospect for the number puzzle enthusiast.

Using the numbers 1, 2, 3, 4 and 5 once each, with + – × ÷ available, it is possible to make the vast majority of numbers in the range 50-100.

For example, to arrive at 50 and 51, you could do:

  • (4+3+2+1)×5 = 50,
  • (4×3–2)×5+1 = 51, and so on . . .

Continuing your calculations, what is the LOWEST number in this range that it’s NOT possible to make?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from up to 84.

The 3rd & 6th columns contain the following fourteen numbers:

4   7   12   15   17   30   35   36   40   49   54   64   80   81

How many square numbers are listed above?

The Factors Challenge

Which of the following numbers are factors of 327?

7    9    11    13    15    17    19    21    None of them

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which are the only THREE numbers it is possible to make from the list below?

10    20    30    40    50    60    70    80    90    100

#10TimesTable

The Target Challenge

Can you arrive at 327 by inserting 3, 5, 5, 7 and 7 into the gaps below?

  •  ((◯+◯)²–◯×◯)×◯ = 327

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

Only one of the following 2-digit even numbers can be divided exactly by 6. Which one?

26  34  38  44  46  50  56  62  64  74  78  86  98

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 3rd & 6th columns contain the following fourteen numbers:

4   7   12   15   17   30   35   36   40   49   54   64   80   81

What is the difference between the highest and lowest multiples of 6?

The Factors Challenge

Which of the following numbers are factors of 326?

4    6    8    12    14    16    None of them

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which are the only THREE numbers it is possible to make from the list below?

9    18    27    36    45    54    63    72    81    90

#9TimesTable

The Target Challenge

Can you arrive at 326 by inserting 1, 2, 3, 4 and 5 into the gaps below?

  •  (◯+◯)³+(◯³×◯²)–◯² = 326

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

Your task is to arrive at the target number of 22 by adding together five numbers. You are limited to using 1-5, but these can be used any number of times.

Can you find the THREE ways of making 22?

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd & 4th columns of the playing board contain the following fourteen numbers:

2   3   6   10   16   20   33   42   45   48   63   70   72   77

Can you find three different numbers from the list that have a sum of exactly 100?

The Factors Challenge

Which of the following numbers are factors of 325?

5     15     25     35     45     55     65     75

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which are the only TWO numbers it is possible to make from the list below?

7    14    21    28    35    42    49    56    63    70

#7TimesTable

The Target Challenge

Can you arrive at 325 by inserting 1, 2, 3, 4 and 5 into the gaps on both lines below?

  •  (◯×◯+◯)×(◯+◯)² = 325
  •  (◯³+◯)×◯×(◯–◯) = 325

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

This challenge has been taken from our series of Mathelona number puzzle pocket books.

Can you complete this task so all three lines work out arithmetically when inserting the digits 0 0 1 1 1 2 3 4 5 6 7 and 8 into the 12 gaps below?

◯  +  ◯   =     6     =   ◯  –  ◯
◯  +  ◯   =    15    =   ◯  ×  ◯
◯  +  ◯   =     1     =   ◯  ÷  ◯

. . . and as an added challenge . . .

can you also complete this successfully if the 12 digits to be inserted were 0 1 1 2 3 4 5 6 7 8 8 and 9?

Further details of our popular challenges can be found by clicking Mathelona.

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 2nd & 4th columns contain the following fourteen numbers:

2   3   6   10   16   20   33   42   45   48   63   70   72   77

What is the sum of the multiples of 3?

The Factors Challenge

Which of the following numbers is NOT a factor of 324?

2     3     4     6     8     9     12     18

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which FIVE numbers is it possible to make from the list below?

6    12    18    24    30    36    42    48    54    60

#6TimesTable

The Target Challenge

Can you arrive at 324 by inserting 1, 2, 3, 4 and 5 into the gaps on both lines below?

  •  (◯×◯+◯+◯–◯)² = 324
  •  ◯³×◯×(◯+◯)÷◯ = 324

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

The Main Challenge

A number puzzle associated with our board game, Mathematically Possible, an excellent resource involving mental arithmetic and strategy. Further details can be found by clicking the link.

Using the numbers 1, 3 and 6 once each, with + – × ÷ available, which one of the following numbers is NOT mathematically possible to make?

2    4    6    8    10    12    15    18    21    24

The 7puzzle Challenge

The playing board of the 7puzzle game is a 7-by-7 grid containing 49 different numbers, ranging from 2 up to 84.

The 1st & 7th columns contain the following fourteen numbers:

5   9   13   21   22   24   27   28   32   50   55   56   60   66

Which two numbers become square numbers when 9 is added to them?

The Factors Challenge

Which of the following numbers are factors of 323?

3    5    7    9    11    13    15    17    19    None of them

The Mathematically Possible Challenge

Using 56 and 12 once each, with + – × ÷ available, which are the only TWO numbers it is possible to make from the list below?

5    10    15    20    25    30    35    40    45    50

#5TimesTable

The Target Challenge

Can you arrive at 323 by inserting 2, 3, 3, 4 and 4 into the gaps below?

  •  ◯⁴+◯³+◯²–◯×◯ = 323

Answers can be found here.

Click Paul Godding for details of online maths tuition.

Read Full Article

Read for later

Articles marked as Favorite are saved for later viewing.
close
  • Show original
  • .
  • Share
  • .
  • Favorite
  • .
  • Email
  • .
  • Add Tags 

Separate tags by commas
To access this feature, please upgrade your account.
Start your free month
Free Preview