Effect of Mn-content of ER5356 welding rods on mechanical properties of Al-alloys joints
Frontiers in Mechanical Engineering
by
2d ago
Introduction: Compared with imported welding wire, domestic aluminum alloy welding wire has more internal inclusion defects. To improve the welding quality and reliability of aluminum alloy, the welding performance of aluminum alloy was improved by adding different content of Mn element.Methods: ER5356 aluminum alloy ingot with different Mn content (0.05% and 0.15%) was prepared by semi-continuous casting and gravity casting. After stretching, the mechanical properties and microstructure of ER5356 aluminum alloy were studied. In addition, the microstructure, microhardness and mechanical behavi ..read more
Visit website
Experimental investigation of tungsten–nickel–iron alloy, W95Ni3.5Fe1.5, compared to copper monolithic bullets
Frontiers in Mechanical Engineering
by
2d ago
Introduction:The demand for improved small arms ammunition has led to exploring advanced materials and manufacturing techniques. This research investigates the machining characteristics of CM and WNF alloy bullets, aiming to enhance ballistic performance and durability.Methods:Bullet profile-making trials were conducted to evaluate the impact of machining parameters such as cutting speed and feed. The study also considered variables including surface roughness, cutting temperature, and hardness, alongside a detailed morphological analysis, The evaluation utilized an orthogonal array and MCDM a ..read more
Visit website
Dynamic modeling and optimization of an eight bar stamping mechanism based on RBF neural network PID control
Frontiers in Mechanical Engineering
by
6d ago
Introduction: Modern industrial manufacturing often requires the eight-bar stamping mechanism to have high motion accuracy and stability. To meet these stringent requirements, traditional control techniques such as proportional-integral-derivative (PID) control need to be improved.Methods: In this study, radial basis function neural network is introduced to improve the traditional proportional integral derivative control technique. The improved proportional integral derivative technique is applied to the modeling and optimization of eight kinds of bar stamping mechanisms.Results: Comparing the ..read more
Visit website
Innovative framework for effective service parts management in the automotive industry
Frontiers in Mechanical Engineering
by
6d ago
Effective service parts management and demand forecasting are crucial for optimizing operations in the automotive industry. However, existing literature lacks a comprehensive framework tailored to the specific context of the Thai automotive sector. This study addresses this gap by proposing a strategic approach to service parts management and demand forecasting in the Thai automotive industry. Drawing on a diverse set of methodologies, including classical time series models and advanced machine learning techniques, various forecasting models were assessed to identify the most effective approac ..read more
Visit website
The application of virtual synchronous generator technology in inertial control of new energy vehicle power generation
Frontiers in Mechanical Engineering
by
1w ago
Introduction: With the rapid development of human society and economy, the power generation technology of various new energy vehicles has begun to receive widespread attention.Methods: Due to the lack of inertia and frequency stability in the new energy vehicle power generation system, this paper proposes a power generation control method that combines linear active disturbance rejection control technology and virtual synchronous generator technology. This method first introduces the control strategy and inertial response of the virtual synchronous generator. Then, it uses linear active distur ..read more
Visit website
Strategic insights in manufacturing site selection: a multi-method approach using factor rating, analytic hierarchy process, and best worst method
Frontiers in Mechanical Engineering
by
1w ago
The current study focuses on selecting the most suitable site location for a manufacturing industry using the Factor Rating Method (FRM). The study considers six key factors: Raw Materials Availability, Location, Availability of Labor, Transport, Availability of Utilities, and Environmental Impact. The FRM assign weights to each factor based on their relative importance. The results indicate that Raw Materials Availability holds the highest weight, suggesting its critical influence on site selection decisions. Subsequently, the Analytic Hierarchy Process (AHP) and Best Worst Method (BWM) are u ..read more
Visit website
Navigating uncertain distribution problem: a new approach for resolution optimization of transportation with several objectives under uncertainty
Frontiers in Mechanical Engineering
by
1w ago
Amidst uncertainty, decision-making in manufacturing becomes a central focus due to its complexity. This study explores complex transportation constraints and uses novel ways to guide manufacturers. The Multi-objective Stochastic Linear Fractional Transportation Problem (MOSLFTP) is a crucial tool for managing supply chains, manufacturing operations, energy distribution, emergency routes, healthcare logistics, and other related areas. It adeptly addresses uncertainty, transforming efficiency and effectiveness in several domains. Stochastic programming is the process of converting theoretical p ..read more
Visit website
Perovskite materials with improved stability and environmental friendliness for photovoltaics
Frontiers in Mechanical Engineering
by
1w ago
Finding innovative, stable, and environmentally acceptable perovskite (PVK) sunlit absorber constituents has developed a major area of study in photovoltaics (PVs). As an alternative to lead-based organic-inorganic halide PVKs, these PVKs are being researched for use in cutting-edge PVK solar cells. While there has been progress in this field as of late, there are still several scientific and technical questions that have yet to be answered. Here, we offer insights into the big picture of PVK toxicity/instability research, and then we discuss methods for creating stable, non-toxic PVKs from sc ..read more
Visit website
The role of muscle forces in neck comfort for static seating: a pilot study
Frontiers in Mechanical Engineering
by
1w ago
Aircraft seats play a key role in the competition between aircraft companies seeking to differentiate themselves in terms of passengers’ inflight experience. The seat design process relies on computational and experimental methods based on subjective measures, such as comfort rating questionnaires, and objective comfort indicators of seat-occupant interaction, such as contact pressure distribution and muscle activation. Previous studies around muscle activity for seating comfort assessment have primarily focused on more active scenarios or active systems. As such, there are limited studies abo ..read more
Visit website
Numerical study on the optimized thickness of layer configuration against the 7.62 APM2 projectile
Frontiers in Mechanical Engineering
by
1w ago
This study aimed to select suitable materials and optimize the thickness of these materials so that they could prevent the perforation of 7.62-mm AP bullets at 830 m/s impact velocity. A numerical method is used to analyze the impact on layered configurations of Al2O3 and Al 7075-T651 to fulfill this aim. In order to optimize the thickness of the armor, normal impact and angular impact conditions were considered. Initially, a 20-mm Al2O3 front plate with a 20-mm Al 7075-T651 back plate is analyzed for layered configuration. Back plate thickness is reduced in steps to 10 mm such that ..read more
Visit website

Follow Frontiers in Mechanical Engineering on FeedSpot

Continue with Google
Continue with Apple
OR