Sunaina thinks absurd

96 FOLLOWERS

A math olympiad blog by Sunaina Pati, to discuss math ideas, share experiences, notes(both school and olympiad).

Sunaina thinks absurd

1M ago

This problem is the same level as last year's P2 or a bit harder, I feel.
No hand diagram because I didn't use any diagram~ (I head solved it in 2 mins)
Problem: Let $ABC$ be a triangle with $AC>AB$ , and denote its circumcircle by $\Omega$ and incentre by $I$. Let its incircle meet sides $BC,CA,AB$ at $D,E,F$ respectively. Let $X$ and $Y$ be two points on minor arcs $\widehat{DF}$ and $\widehat{DE}$ of the incircle, respectively, such that $\angle BXD = \angle DYC$. Let line $XY$ meet line $BC$ at $K$. Let $T$ be the point on $\Omega$ such that $KT$ is tangent to $\Omega ..read more

Sunaina thinks absurd

4M ago

Today we shall try IMO Shortlist $2022$ C1.
A $\pm 1$-sequence is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and$$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$
We claim that the answer is $\boxed{506}$.
$506$ is the upper bound.
Just consider the sequence $$+1,-1,-1,+1,+1,-1,-1,+1\dots,-1,-1,+1,+1,-1.$$ Here $1, -1, -1, 1$ is repeated $505$ times and $1,-1 ..read more

Sunaina thinks absurd

4M ago

I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.
(2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$.
Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$.
There exists an infinite set $T$ such that $\f ..read more

Sunaina thinks absurd

4M ago

These problems are INMO~ish level. So trying this would be a good practice for INMO!
Let $ABCD$ be a quadrilateral. Let $M,N,P,Q$ be the midpoints of sides $AB,BC,CD,DA$. Prove that $MNPQ$ is a parallelogram.
Consider $\Delta ABD$ and $\Delta BDC$ .Note that $NP||BD||MQ$. Similarly, $NM||AC||PQ$. Hence the parallelogram.
In $\Delta ABC$, $\angle A$ be right. Let $D$ be the foot of the altitude from $A$ onto $BC$. Prove that $AD^2=BD\cdot CD$.
Note that $\Delta ADB\sim \Delta CDA$. So by similarity, we have $$\frac{AD}{BD}=\frac{CD}{AD}.$$
In $\Delta ABC$, $\angle A$ be right. Let ..read more

Sunaina thinks absurd

10M ago

Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry )
You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already. What I am scared of is whether I will be able to handle the coursework and get good grades T_T
Any ..read more

Sunaina thinks absurd

1y ago

"Let's wait for this exam to get over".. *Proceeds to wait for 2 whole fricking years!
I always wanted to write a book recommendation list, because I have been asked so many times! But then I was always like "Let's wait for this exam to get over" and so on. Why? You see it's pretty embarrassing to write a "How to prepare for RMO/INMO" post and then proceed to "fail" i.e not qualifying.
Okay okay, you might be thinking, "Sunaina you qualified like in 10th grade itself, you will obviously qualify in 11th and 12th grade." No. It's not that easy. Plus you are talking to a very undercon ..read more

Sunaina thinks absurd

1y ago

Heya! INMO Results are out! Well, I am now a 3 times IMOTCer :D. Very excited to meet every one of you! My INMO score was exactly 26 with a distribution of 17|0|0|0|0|9, which was a fair grading cause after problem 1, I tried problem 6 next. I was hoping for some partials in problem 4 but didn't get any.
I am so so so excited to meet everyone! Can't believe my olympiad journey is going to end soon.. ..read more

Sunaina thinks absurd

1y ago

Ehh INMO was trash. I think I will get 17/0/0/0-1/3-5/10-14, which is def not good enough for qualifying from 12th grade. Well, I really feel sad but let's not talk about it and focus on EGMO rather.
INMO 2023 P1
Let $S$ be a finite set of positive integers. Assume that there are precisely 2023 ordered pairs $(x,y)$ in $S\times S$ so that the product $xy$ is a perfect square. Prove that one can find at least four distinct elements in $S$ so that none of their pairwise products is a perfect square.
I will use Atul's sol, cause it's the exact same as mine.
Proof: Consider the graph ..read more

Sunaina thinks absurd

1y ago

Random thoughts but I think these days I am more into Rock? Like not metal rock but pop/indie rock. Those guitars, drums, vocals everything just attracts me.
The Rose, TXT, N.Flying, The western ghats, Seventeen, Enhypen and Woosung are my favourites currently.
My current fav songs are:
Oki a few problems I did this week!
Tuymaada 2018 Junior League/Problem 2
A circle touches the side $AB$ of the triangle $ABC$ at $A$, touches the side $BC$ at $P$ and intersects the side $AC$ at $Q$. The line symmetrical to $PQ$ with respect to $AC$ meets the line $AP$ at $X$. Prove that ..read more

Sunaina thinks absurd

1y ago

Wrapping up this year with a few problems I did in the past week :)
Edge colouring with $n$ colours $K_n$
Prove that if the edges of $K_n$ are coloured with $n$ colours, then some triangle has its edges of different colours.
Proof: We use induction. For $n=3$ it is true. Now, suppose it is true for $n=1,\dots, l$. We will show it is true for $n=l+1$. Now, consider $k_{l+1}$ with vertex $v_1,\dots,v_{l+1}$. Consider the $k_l$ with vertex $v_2,\dots, v_{l+1}$. Now note that the colours used in that $k_l$ are max $l-1$ colours (since by induction, if $l$ colours then we get a tr ..read more