EGMO 2024 P2
Sunaina thinks absurd
by Sunaina Pati
1M ago
  This problem is the same level as last year's P2 or a bit harder, I feel.  No hand diagram because I didn't use any diagram~ (I head solved it in 2 mins) Problem: Let $ABC$ be a triangle with $AC>AB$ , and denote its circumcircle by $\Omega$ and incentre by $I$. Let its incircle meet sides $BC,CA,AB$ at $D,E,F$ respectively. Let $X$ and $Y$ be two points on minor arcs $\widehat{DF}$ and $\widehat{DE}$ of the incircle, respectively, such that $\angle BXD = \angle DYC$. Let line $XY$ meet line $BC$ at $K$. Let $T$ be the point on $\Omega$ such that $KT$ is tangent to $\Omega ..read more
Visit website
IMO Shortlist 2022 C1
Sunaina thinks absurd
by Sunaina Pati
4M ago
  Today we shall try IMO Shortlist $2022$ C1. A $\pm 1$-sequence is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and$$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$ We claim that the answer is $\boxed{506}$. $506$ is the upper bound. Just consider the sequence $$+1,-1,-1,+1,+1,-1,-1,+1\dots,-1,-1,+1,+1,-1.$$ Here $1, -1, -1, 1$ is repeated $505$ times and $1,-1 ..read more
Visit website
IMO Shortlist 2021 C1
Sunaina thinks absurd
by Sunaina Pati
4M ago
 I am planning to do at least one ISL every day so that I do not lose my Olympiad touch (and also they are fun to think about!). Today, I tried the 2021 IMO shortlist C1.  (2021 ISL C1) Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$. Suppose not. Then any $3$ elements $x,y,z\in S$ will be $(x,y)=(y,z)=(x,z)$ or $(x,y)\ne (y,z)\ne (x,z)$. There exists an infinite set $T$ such that $\f ..read more
Visit website
Some Geometry Problems for everyone to try!
Sunaina thinks absurd
by Sunaina Pati
4M ago
 These problems are INMO~ish level. So trying this would be a good practice for INMO!  Let $ABCD$ be a quadrilateral. Let $M,N,P,Q$ be the midpoints of sides $AB,BC,CD,DA$. Prove that $MNPQ$ is a parallelogram. Consider $\Delta ABD$ and $\Delta BDC$ .Note that $NP||BD||MQ$. Similarly, $NM||AC||PQ$. Hence the parallelogram. In $\Delta ABC$, $\angle A$ be right. Let $D$ be the foot of the altitude from $A$ onto $BC$. Prove that $AD^2=BD\cdot CD$. Note that $\Delta ADB\sim \Delta CDA$. So by similarity, we have $$\frac{AD}{BD}=\frac{CD}{AD}.$$ In $\Delta ABC$, $\angle A$ be right. Let ..read more
Visit website
My experiences at EGMO, IMOTC and PROMYS experience
Sunaina thinks absurd
by Sunaina Pati
10M ago
Yes, I know. This post should have been posted like 2 months ago. Okay okay, sorry. But yeah, I was just waiting for everything to be over and I was lazy. ( sorry ) You know, the transitioning period from high school to college is very weird. I will join CMI( Chennai Mathematical  Institue) for bsc maths and cs degree. And I am very scared. Like very very scared. No, not about making new friends and all. I don't care about that part because I know a decent amount of CMI people already.  What I am scared of is whether I will be able to handle the coursework and get good grades T_T Any ..read more
Visit website
How to prepare for RMO?
Sunaina thinks absurd
by Sunaina Pati
1y ago
"Let's wait for this exam to get over".. *Proceeds to wait for 2 whole fricking years!  I always wanted to write a book recommendation list, because I have been asked so many times! But then I was always like "Let's wait for this exam to get over" and so on. Why? You see it's pretty embarrassing to write a "How to prepare for RMO/INMO" post and then proceed to "fail" i.e not qualifying.  Okay okay, you might be thinking, "Sunaina you qualified like in 10th grade itself, you will obviously qualify in 11th and 12th grade." No. It's not that easy. Plus you are talking to a very undercon ..read more
Visit website
INMO Scores and Results
Sunaina thinks absurd
by Sunaina Pati
1y ago
Heya! INMO Results are out! Well, I am now a 3 times IMOTCer :D. Very excited to meet every one of you! My INMO score was exactly 26 with a distribution of 17|0|0|0|0|9, which was a fair grading cause after problem 1, I tried problem 6 next. I was hoping for some partials in problem 4 but didn't get any.  I am so so so excited to meet everyone! Can't believe my olympiad journey is going to end soon..  ..read more
Visit website
Challenging myself? [Jan 15-Jan 27]
Sunaina thinks absurd
by Sunaina Pati
1y ago
Ehh INMO was trash. I think I will get 17/0/0/0-1/3-5/10-14, which is def not good enough for qualifying from 12th grade. Well, I really feel sad but let's not talk about it and focus on EGMO rather.  INMO 2023 P1 Let $S$ be a finite set of positive integers. Assume that there are precisely 2023 ordered pairs $(x,y)$ in $S\times S$ so that the product $xy$ is a perfect square. Prove that one can find at least four distinct elements in $S$ so that none of their pairwise products is a perfect square. I will use Atul's sol, cause it's the exact same as mine.  Proof: Consider the graph ..read more
Visit website
Problems I did this week #1[Jan1-Jan8]
Sunaina thinks absurd
by Sunaina Pati
1y ago
 Random thoughts but I think these days I am more into Rock? Like not metal rock but pop/indie rock. Those guitars, drums, vocals everything just attracts me.  The Rose, TXT, N.Flying, The western ghats, Seventeen, Enhypen and Woosung are my favourites currently.  My current fav songs are: Oki a few problems I did this week! Tuymaada 2018 Junior League/Problem 2 A circle touches the side $AB$ of the triangle $ABC$ at $A$, touches the side $BC$ at $P$ and intersects the side $AC$ at $Q$. The line symmetrical to $PQ$ with respect to $AC$ meets the line $AP$ at $X$. Prove that ..read more
Visit website
Trying to go beyond my comfort level?
Sunaina thinks absurd
by Sunaina Pati
1y ago
Wrapping up this year with a few problems I did in the past week :)  Edge colouring with $n$ colours $K_n$  Prove that if the edges of $K_n$ are coloured with $n$ colours, then some triangle has its edges of different colours.  Proof: We use induction. For $n=3$ it is true. Now, suppose it is true for $n=1,\dots, l$. We will show it is true for $n=l+1$. Now, consider $k_{l+1}$ with vertex $v_1,\dots,v_{l+1}$. Consider the $k_l$ with vertex $v_2,\dots, v_{l+1}$. Now note that the colours used in that $k_l$ are max $l-1$ colours (since by induction, if $l$ colours then we get a tr ..read more
Visit website

Follow Sunaina thinks absurd on FeedSpot

Continue with Google
Continue with Apple
OR