Zenlytic Is Building You A Better Coworker With AI Agents
Data Engineering Podcast
by Tobias Macey
6d ago
Summary The purpose of business intelligence systems is to allow anyone in the business to access and decode data to help them make informed decisions. Unfortunately this often turns into an exercise in frustration for everyone involved due to complex workflows and hard-to-understand dashboards. The team at Zenlytic have leaned on the promise of large language models to build an AI agent that lets you converse with your data. In this episode they share their journey through the fast-moving landscape of generative AI and unpack the difference between an AI chatbot and an AI agent. Announcements ..read more
Visit website
Release Management For Data Platform Services And Logic
Data Engineering Podcast
by Tobias Macey
1w ago
Summary Building a data platform is a substrantial engineering endeavor. Once it is running, the next challenge is figuring out how to address release management for all of the different component parts. The services and systems need to be kept up to date, but so does the code that controls their behavior. In this episode your host Tobias Macey reflects on his current challenges in this area and some of the factors that contribute to the complexity of the problem. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management This episode is supported b ..read more
Visit website
Barking Up The Wrong GPTree: Building Better AI With A Cognitive Approach
Data Engineering Podcast
by Tobias Macey
2w ago
Summary Artificial intelligence has dominated the headlines for several months due to the successes of large language models. This has prompted numerous debates about the possibility of, and timeline for, artificial general intelligence (AGI). Peter Voss has dedicated decades of his life to the pursuit of truly intelligent software through the approach of cognitive AI. In this episode he explains his approach to building AI in a more human-like fashion and the emphasis on learning rather than statistical prediction. Announcements Hello and welcome to the Data Engineering Podcast, the show abo ..read more
Visit website
Designing A Non-Relational Database Engine
Data Engineering Podcast
by Tobias Macey
1M ago
Summary Databases come in a variety of formats for different use cases. The default association with the term "database" is relational engines, but non-relational engines are also used quite widely. In this episode Oren Eini, CEO and creator of RavenDB, explores the nuances of relational vs. non-relational engines, and the strategies for designing a non-relational database. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management This episode is brought to you by Datafold – a testing automation platform for data engineers that prevents data qualit ..read more
Visit website
Establish A Single Source Of Truth For Your Data Consumers With A Semantic Layer
Data Engineering Podcast
by Tobias Macey
1M ago
Summary Maintaining a single source of truth for your data is the biggest challenge in data engineering. Different roles and tasks in the business need their own ways to access and analyze the data in the organization. In order to enable this use case, while maintaining a single point of access, the semantic layer has evolved as a technological solution to the problem. In this episode Artyom Keydunov, creator of Cube, discusses the evolution and applications of the semantic layer as a component of your data platform, and how Cube provides speed and cost optimization for your data consumers. An ..read more
Visit website
Adding Anomaly Detection And Observability To Your dbt Projects Is Elementary
Data Engineering Podcast
by Tobias Macey
1M ago
Summary Working with data is a complicated process, with numerous chances for something to go wrong. Identifying and accounting for those errors is a critical piece of building trust in the organization that your data is accurate and up to date. While there are numerous products available to provide that visibility, they all have different technologies and workflows that they focus on. To bring observability to dbt projects the team at Elementary embedded themselves into the workflow. In this episode Maayan Salom explores the approach that she has taken to bring observability, enhanced testing ..read more
Visit website
Ship Smarter Not Harder With Declarative And Collaborative Data Orchestration On Dagster+
Data Engineering Podcast
by Tobias Macey
2M ago
Summary A core differentiator of Dagster in the ecosystem of data orchestration is their focus on software defined assets as a means of building declarative workflows. With their launch of Dagster+ as the redesigned commercial companion to the open source project they are investing in that capability with a suite of new features. In this episode Pete Hunt, CEO of Dagster labs, outlines these new capabilities, how they reduce the burden on data teams, and the increased collaboration that they enable across teams and business units. Announcements Hello and welcome to the Data Engineering Podcas ..read more
Visit website
Reconciling The Data In Your Databases With Datafold
Data Engineering Podcast
by Tobias Macey
2M ago
Summary A significant portion of data workflows involve storing and processing information in database engines. Validating that the information is stored and processed correctly can be complex and time-consuming, especially when the source and destination speak different dialects of SQL. In this episode Gleb Mezhanskiy, founder and CEO of Datafold, discusses the different error conditions and solutions that you need to know about to ensure the accuracy of your data. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Dagster offers a new appr ..read more
Visit website
Version Your Data Lakehouse Like Your Software With Nessie
Data Engineering Podcast
by Tobias Macey
2M ago
Summary Data lakehouse architectures are gaining popularity due to the flexibility and cost effectiveness that they offer. The link that bridges the gap between data lake and warehouse capabilities is the catalog. The primary purpose of the catalog is to inform the query engine of what data exists and where, but the Nessie project aims to go beyond that simple utility. In this episode Alex Merced explains how the branching and merging functionality in Nessie allows you to use the same versioning semantics for your data lakehouse that you are used to from Git. Announcements Hello and welcome t ..read more
Visit website
When And How To Conduct An AI Program
Data Engineering Podcast
by Tobias Macey
2M ago
Summary Artificial intelligence technologies promise to revolutionize business and produce new sources of value. In order to make those promises a reality there is a substantial amount of strategy and investment required. Colleen Tartow has worked across all stages of the data lifecycle, and in this episode she shares her hard-earned wisdom about how to conduct an AI program for your organization. Announcements Hello and welcome to the Data Engineering Podcast, the show about modern data management Dagster offers a new approach to building and running data platforms and data pipelines. It is ..read more
Visit website

Follow Data Engineering Podcast on FeedSpot

Continue with Google
Continue with Apple
OR